Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

Commit

Permalink
Snapshot
Browse files Browse the repository at this point in the history
  • Loading branch information
urkud committed Dec 9, 2020
1 parent 3aa365b commit 969703c
Showing 1 changed file with 7 additions and 9 deletions.
16 changes: 7 additions & 9 deletions src/topology/algebra/ordered.lean
Original file line number Diff line number Diff line change
Expand Up @@ -299,8 +299,8 @@ end
/-- Intermediate value theorem for two functions: if `f` and `g` are two functions continuous
on a preconnected set `s` and for some `a b ∈ s` we have `f a ≤ g a` and `g b ≤ f b`,
then for some `x ∈ s` we have `f x = g x`. -/
lemma is_preconnected.intermediate_value₂ {s : set γ}
(hs : is_preconnected s) {a b : γ} (ha : a ∈ s) (hb : b ∈ s) {f g : γ → α}
lemma is_preconnected.intermediate_value₂ {s : set γ} (hs : is_preconnected s)
{a b : γ} (ha : a ∈ s) (hb : b ∈ s) {f g : γ → α}
(hf : continuous_on f s) (hg : continuous_on g s) (ha' : f a ≤ g a) (hb' : g b ≤ f b) :
∃ x ∈ s, f x = g x :=
let ⟨x, hx⟩ := @intermediate_value_univ₂ α s _ _ _ _ (subtype.preconnected_space hs) ⟨a, ha⟩ ⟨b, hb⟩
Expand All @@ -309,21 +309,19 @@ let ⟨x, hx⟩ := @intermediate_value_univ₂ α s _ _ _ _ (subtype.preconnecte
in ⟨x, x.2, hx⟩

/-- Intermediate Value Theorem for continuous functions on connected sets. -/
lemma is_preconnected.intermediate_value {γ : Type*} [topological_space γ] {s : set γ}
(hs : is_preconnected s) {a b : γ} (ha : a ∈ s) (hb : b ∈ s) {f : γ → α}
(hf : continuous_on f s) :
lemma is_preconnected.intermediate_value {s : set γ} (hs : is_preconnected s)
{a b : γ} (ha : a ∈ s) (hb : b ∈ s) {f : γ → α} (hf : continuous_on f s) :
Icc (f a) (f b) ⊆ f '' s :=
λ x hx, mem_image_iff_bex.2 $ hs.intermediate_value₂ ha hb hf continuous_on_const hx.1 hx.2

/-- Intermediate Value Theorem for continuous functions on connected spaces. -/
lemma intermediate_value_univ {γ : Type*} [topological_space γ] [preconnected_space γ]
(a b : γ) {f : γ → α} (hf : continuous f) :
lemma intermediate_value_univ [preconnected_space γ] (a b : γ) {f : γ → α} (hf : continuous f) :
Icc (f a) (f b) ⊆ range f :=
λ x hx, intermediate_value_univ₂ hf continuous_const hx.1 hx.2

/-- Intermediate Value Theorem for continuous functions on connected spaces. -/
lemma mem_range_of_exists_le_of_exists_ge {γ : Type*} [topological_space γ] [preconnected_space γ]
{c : α} {f : γ → α} (hf : continuous f) (h₁ : ∃ a, f a ≤ c) (h₂ : ∃ b, c ≤ f b) :
lemma mem_range_of_exists_le_of_exists_ge [preconnected_space γ] {c : α} {f : γ → α}
(hf : continuous f) (h₁ : ∃ a, f a ≤ c) (h₂ : ∃ b, c ≤ f b) :
c ∈ range f :=
let ⟨a, ha⟩ := h₁, ⟨b, hb⟩ := h₂ in intermediate_value_univ a b hf ⟨ha, hb⟩

Expand Down

0 comments on commit 969703c

Please sign in to comment.