Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

Commit

Permalink
Fix
Browse files Browse the repository at this point in the history
  • Loading branch information
urkud committed Dec 9, 2020
1 parent 1684add commit 3aa365b
Showing 1 changed file with 14 additions and 14 deletions.
28 changes: 14 additions & 14 deletions src/topology/algebra/ordered.lean
Original file line number Diff line number Diff line change
Expand Up @@ -212,19 +212,19 @@ lemma is_closed.is_closed_le [topological_space β] {f g : β → α} {s : set
omit t

lemma nhds_within_Ici_ne_bot {a b : α} (H₂ : a ≤ b) :
𝓝[Ici a] b ≠ ⊥ :=
ne_bot (𝓝[Ici a] b) :=
nhds_within_ne_bot_of_mem H₂

lemma nhds_within_Ici_self_ne_bot (a : α) :
𝓝[Ici a] a ≠ ⊥ :=
@[instance] lemma nhds_within_Ici_self_ne_bot (a : α) :
ne_bot (𝓝[Ici a] a) :=
nhds_within_Ici_ne_bot (le_refl a)

lemma nhds_within_Iic_ne_bot {a b : α} (H : a ≤ b) :
𝓝[Iic b] a ≠ ⊥ :=
ne_bot (𝓝[Iic b] a) :=
nhds_within_ne_bot_of_mem H

lemma nhds_within_Iic_self_ne_bot (a : α) :
𝓝[Iic a] a ≠ ⊥ :=
@[instance] lemma nhds_within_Iic_self_ne_bot (a : α) :
ne_bot (𝓝[Iic a] a) :=
nhds_within_Iic_ne_bot (le_refl a)

end preorder
Expand Down Expand Up @@ -281,10 +281,12 @@ is_open_Iio.interior_eq
@[simp] lemma interior_Ioo : interior (Ioo a b) = Ioo a b :=
is_open_Ioo.interior_eq

variables [topological_space γ]

/-- Intermediate value theorem for two functions: if `f` and `g` are two continuous functions
on a preconnected space and `f a ≤ g a` and `g b ≤ f b`, then for some `x` we have `f x = g x`. -/
lemma intermediate_value_univ₂ {γ : Type*} [topological_space γ] [preconnected_space γ] {a b : γ}
{f g : γ → α} (hf : continuous f) (hg : continuous g) (ha : f a ≤ g a) (hb : g b ≤ f b) :
lemma intermediate_value_univ₂ [preconnected_space γ] {a b : γ} {f g : γ → α} (hf : continuous f)
(hg : continuous g) (ha : f a ≤ g a) (hb : g b ≤ f b) :
∃ x, f x = g x :=
begin
obtain ⟨x, h, hfg, hgf⟩ : (univ ∩ {x | f x ≤ g x ∧ g x ≤ f x}).nonempty,
Expand All @@ -297,11 +299,11 @@ end
/-- Intermediate value theorem for two functions: if `f` and `g` are two functions continuous
on a preconnected set `s` and for some `a b ∈ s` we have `f a ≤ g a` and `g b ≤ f b`,
then for some `x ∈ s` we have `f x = g x`. -/
lemma is_preconnected.intermediate_value₂ {γ : Type*} [topological_space γ] {s : set γ}
lemma is_preconnected.intermediate_value₂ {s : set γ}
(hs : is_preconnected s) {a b : γ} (ha : a ∈ s) (hb : b ∈ s) {f g : γ → α}
(hf : continuous_on f s) (hg : continuous_on g s) (ha' : f a ≤ g a) (hb' : g b ≤ f b) :
∃ x ∈ s, f x = g x :=
let ⟨x, hx⟩ := @intermediate_value_univ₂ α _ _ _ s _ (subtype.preconnected_space hs) ⟨a, ha⟩ ⟨b, hb⟩
let ⟨x, hx⟩ := @intermediate_value_univ₂ α s _ _ _ _ (subtype.preconnected_space hs) ⟨a, ha⟩ ⟨b, hb⟩
_ _ (continuous_on_iff_continuous_restrict.1 hf) (continuous_on_iff_continuous_restrict.1 hg)
ha' hb'
in ⟨x, x.2, hx⟩
Expand Down Expand Up @@ -3195,10 +3197,8 @@ noncomputable def homeomorph_of_strict_mono_continuous_Ioo
(h_top : tendsto f (𝓝[Iio b] b) at_top)
(h_bot : tendsto f (𝓝[Ioi a] a) at_bot) :
homeomorph (Ioo a b) β :=
@homeomorph_of_strict_mono_continuous _ _
(@ord_connected_subset_conditionally_complete_linear_order α (Ioo a b) _
⟨classical.choice (nonempty_Ioo_subtype h)⟩ _)
_ _ _ _ _ _
by haveI : inhabited (Ioo a b) := inhabited_of_nonempty (nonempty_Ioo_subtype h); exact
homeomorph_of_strict_mono_continuous
(restrict f (Ioo a b))
(λ x y, h_mono x.2.1 y.2.2)
(continuous_on_iff_continuous_restrict.mp h_cont)
Expand Down

0 comments on commit 3aa365b

Please sign in to comment.