-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
30993f3
commit 17f068a
Showing
3 changed files
with
155 additions
and
123 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,42 +1,43 @@ | ||
%-------------------------------------------------------------------------% | ||
% Binary Harris Hawk Optimization (BHHO) source codes demo version % | ||
% % | ||
% Programmer: Jingwei Too % | ||
% % | ||
% E-Mail: jamesjames868@gmail.com % | ||
%-------------------------------------------------------------------------% | ||
%-------------------------------------------------------------------% | ||
% Binary Harris Hawk Optimization (BHHO) demo version % | ||
%-------------------------------------------------------------------% | ||
|
||
|
||
%---Inputs----------------------------------------------------------------- | ||
% feat: features | ||
% label: labelling | ||
% N: Number of hawks | ||
% T: Maximum number of iterations | ||
%---Outputs---------------------------------------------------------------- | ||
% sFeat: Selected features | ||
% Sf: Selected feature index | ||
% Nf: Number of selected features | ||
% curve: Convergence curve | ||
%-------------------------------------------------------------------------- | ||
%---Inputs----------------------------------------------------------- | ||
% feat : feature vector (instances x features) | ||
% label : label vector (instance x 1) | ||
% N : Number of hawks | ||
% max_Iter : Maximum number of iterations | ||
|
||
%---Outputs---------------------------------------------------------- | ||
% sFeat : Selected features | ||
% Sf : Selected feature index | ||
% Nf : Number of selected features | ||
% curve : Convergence curve | ||
%-------------------------------------------------------------------- | ||
|
||
|
||
%% Binary Harris Hawk Optimization | ||
clc, clear, close; | ||
% Benchmark data set | ||
load ionosphere.mat; | ||
|
||
% Set 20% data as validation set | ||
ho=0.2; | ||
ho = 0.2; | ||
% Hold-out method | ||
HO=cvpartition(label,'HoldOut',ho,'Stratify',false); | ||
HO = cvpartition(label,'HoldOut',ho,'Stratify',false); | ||
|
||
% Parameter setting | ||
N=10; T=100; | ||
N = 10; | ||
max_Iter = 100; | ||
% Binary Harris Hawk Optimization | ||
[sFeat,Sf,Nf,curve]=jBHHO(feat,label,N,T,HO); | ||
% Plot convergence curve | ||
figure(); plot(1:T,curve); xlabel('Number of iterations'); | ||
ylabel('Fitness Value'); title('BHHO'); grid on; | ||
[sFeat,Sf,Nf,curve] = jBHHO(feat,label,N,max_Iter,HO); | ||
|
||
% Plot convergence curve | ||
plot(1:max_Iter,curve); | ||
xlabel('Number of iterations'); | ||
ylabel('Fitness Value'); | ||
title('BHHO'); grid on; | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,144 +1,170 @@ | ||
function [sFeat,Sf,Nf,curve]=jBHHO(feat,label,N,T,HO) | ||
function [sFeat,Sf,Nf,curve] = jBHHO(feat,label,N,max_Iter,HO) | ||
|
||
fun=@jFitnessFunction; | ||
D=size(feat,2); X=zeros(N,D); | ||
for i=1:N | ||
for d=1:D | ||
beta = 1.5; | ||
ub = 1; | ||
lb = 0; | ||
|
||
fun = @jFitnessFunction; | ||
dim = size(feat,2); | ||
X = zeros(N,dim); | ||
for i = 1:N | ||
for d = 1:dim | ||
if rand() > 0.5 | ||
X(i,d)=1; | ||
X(i,d) = 1; | ||
end | ||
end | ||
end | ||
fitR=inf; fit=zeros(1,N); Y=zeros(1,D); Z=zeros(1,D); | ||
beta=1.5; ub=1; lb=0; t=1; curve=inf; | ||
%---Iteration start------------------------------------------------------- | ||
while t <= T | ||
for i=1:N | ||
fit(i)=fun(feat,label,X(i,:),HO); | ||
fitR = inf; | ||
fit = zeros(1,N); | ||
Y = zeros(1,dim); | ||
Z = zeros(1,dim); | ||
|
||
curve = inf; | ||
t = 1; | ||
%---Iteration start------------------------------------------------- | ||
while t <= max_Iter | ||
for i = 1:N | ||
fit(i) = fun(feat,label,X(i,:),HO); | ||
if fit(i) < fitR | ||
fitR=fit(i); Xrb=X(i,:); | ||
fitR = fit(i); | ||
Xrb = X(i,:); | ||
end | ||
end | ||
Xm=mean(X,1); | ||
for i=1:N | ||
E0=-1+2*rand(); | ||
E=2*E0*(1-(t/T)); | ||
X_mu = mean(X,1); | ||
for i = 1:N | ||
E0 = -1 + 2 * rand(); | ||
E = 2 * E0 * (1 - (t / max_Iter)); | ||
if abs(E) >= 1 | ||
q=rand(); | ||
q = rand(); | ||
if q >= 0.5 | ||
k=randi([1,N]); r1=rand(); r2=rand(); | ||
for d=1:D | ||
Xn=X(k,d)-r1*abs(X(k,d)-2*r2*X(i,d)); | ||
S=1/(1+exp(-Xn)); | ||
k = randi([1,N]); | ||
r1 = rand(); | ||
r2 = rand(); | ||
for d = 1:dim | ||
Xn = X(k,d) - r1 * abs(X(k,d) - 2 * r2 * X(i,d)); | ||
S = 1 / (1 + exp(-Xn)); | ||
if rand() < S | ||
X(i,d)=1; | ||
else | ||
X(i,d)=0; | ||
X(i,d)= 1; | ||
else | ||
X(i,d) = 0; | ||
end | ||
end | ||
elseif q < 0.5 | ||
r3=rand(); r4=rand(); | ||
for d=1:D | ||
Xn=(Xrb(d)-Xm(d))-r3*(lb+r4*(ub-lb)); | ||
S=1/(1+exp(-Xn)); | ||
r3 = rand(); | ||
r4 = rand(); | ||
for d = 1:dim | ||
Xn = (Xrb(d) - X_mu(d)) - r3 * (lb + r4 * (ub - lb)); | ||
S = 1 / (1 + exp(-Xn)); | ||
if rand() < S | ||
X(i,d)=1; | ||
X(i,d) = 1; | ||
else | ||
X(i,d)=0; | ||
X(i,d) = 0; | ||
end | ||
end | ||
end | ||
elseif abs(E) < 1 | ||
J=2*(1-rand()); r=rand(); | ||
if r >= 0.5 && abs(E) >= 0.5 | ||
for d=1:D | ||
DX=Xrb(d)-X(i,d); | ||
Xn=DX-E*abs(J*Xrb(d)-X(i,d)); | ||
S=1/(1+exp(-Xn)); | ||
J = 2 * (1 - rand()); | ||
r = rand(); | ||
if r >= 0.5 && abs(E) >= 0.5 | ||
for d = 1:dim | ||
DX = Xrb(d) - X(i,d); | ||
Xn = DX - E * abs(J * Xrb(d) - X(i,d)); | ||
S = 1 / (1 + exp(-Xn)); | ||
if rand() < S | ||
X(i,d)=1; | ||
X(i,d) = 1; | ||
else | ||
X(i,d)=0; | ||
X(i,d) = 0; | ||
end | ||
end | ||
elseif r >= 0.5 && abs(E) < 0.5 | ||
for d=1:D | ||
DX=Xrb(d)-X(i,d); | ||
Xn=Xrb(d)-E*abs(DX); | ||
S=1/(1+exp(-Xn)); | ||
elseif r >= 0.5 && abs(E) < 0.5 | ||
for d = 1:dim | ||
DX = Xrb(d) - X(i,d); | ||
Xn = Xrb(d) - E * abs(DX); | ||
S = 1 / (1 + exp(-Xn)); | ||
if rand() < S | ||
X(i,d)=1; | ||
X(i,d) = 1; | ||
else | ||
X(i,d)=0; | ||
X(i,d) = 0; | ||
end | ||
end | ||
elseif r < 0.5 && abs(E) >= 0.5 | ||
LF=jLevyDistribution(beta,D); | ||
for d=1:D | ||
Yn=Xrb(d)-E*abs(J*Xrb(d)-X(i,d)); | ||
S=1/(1+exp(-Yn)); | ||
elseif r < 0.5 && abs(E) >= 0.5 | ||
LF = jLevyDistribution(beta,dim); | ||
for d = 1:dim | ||
Yn = Xrb(d) - E * abs(J * Xrb(d) - X(i,d)); | ||
S = 1 / (1 + exp(-Yn)); | ||
if rand() < S | ||
Y(d)=1; | ||
Y(d) = 1; | ||
else | ||
Y(d)=0; | ||
Y(d) = 0; | ||
end | ||
Zn=Y(d)+rand()*LF(d); | ||
S=1/(1+exp(-Zn)); | ||
Zn = Y(d) + rand() * LF(d); | ||
S = 1 / (1 + exp(-Zn)); | ||
if rand() < S | ||
Z(d)=1; | ||
Z(d) = 1; | ||
else | ||
Z(d)=0; | ||
Z(d) = 0; | ||
end | ||
end | ||
fitY=fun(feat,label,Y,HO); fitZ=fun(feat,label,Z,HO); | ||
fitY = fun(feat,label,Y,HO); | ||
fitZ = fun(feat,label,Z,HO); | ||
if fitY <= fit(i) | ||
fit(i)=fitY; X(i,:)=Y; | ||
fit(i) = fitY; | ||
X(i,:) = Y; | ||
end | ||
if fitZ <= fit(i) | ||
fit(i)=fitZ; X(i,:)=Z; | ||
fit(i) = fitZ; | ||
X(i,:) = Z; | ||
end | ||
elseif r < 0.5 && abs(E) < 0.5 | ||
LF=jLevyDistribution(beta,D); | ||
for d=1:D | ||
Yn=Xrb(d)-E*abs(J*Xrb(d)-Xm(d)); | ||
S=1/(1+exp(-Yn)); | ||
elseif r < 0.5 && abs(E) < 0.5 | ||
LF = jLevyDistribution(beta,dim); | ||
for d = 1:dim | ||
Yn = Xrb(d) - E * abs(J * Xrb(d) - X_mu(d)); | ||
S = 1 / (1 + exp(-Yn)); | ||
if rand() < S | ||
Y(d)=1; | ||
Y(d) = 1; | ||
else | ||
Y(d)=0; | ||
Y(d) = 0; | ||
end | ||
Zn=Y(d)+rand()*LF(d); | ||
S=1/(1+exp(-Zn)); | ||
Zn = Y(d) + rand() * LF(d); | ||
S = 1 / (1 + exp(-Zn)); | ||
if rand() < S | ||
Z(d)=1; | ||
Z(d) = 1; | ||
else | ||
Z(d)=0; | ||
Z(d) = 0; | ||
end | ||
end | ||
fitY=fun(feat,label,Y,HO); fitZ=fun(feat,label,Z,HO); | ||
fitY = fun(feat,label,Y,HO); | ||
fitZ = fun(feat,label,Z,HO); | ||
if fitY <= fit(i) | ||
fit(i)=fitY; X(i,:)=Y; | ||
fit(i) = fitY; | ||
X(i,:) = Y; | ||
end | ||
if fitZ <= fit(i) | ||
fit(i)=fitZ; X(i,:)=Z; | ||
fit(i) = fitZ; | ||
X(i,:) = Z; | ||
end | ||
end | ||
end | ||
end | ||
curve(t)=fitR; | ||
curve(t) = fitR; | ||
fprintf('\nIteration %d Best (BHHO)= %f',t,curve(t)) | ||
t=t+1; | ||
t = t + 1; | ||
end | ||
Pos=1:D; Sf=Pos(Xrb==1); Nf=length(Sf); sFeat=feat(:,Sf); | ||
Pos = 1:dim; | ||
Sf = Pos(Xrb == 1); | ||
Nf = length(Sf); | ||
sFeat = feat(:,Sf); | ||
end | ||
|
||
|
||
function LF=jLevyDistribution(beta,D) | ||
nume=gamma(1+beta)*sin(pi*beta/2); | ||
deno=gamma((1+beta)/2)*beta*2^((beta-1)/2); | ||
sigma=(nume/deno)^(1/beta); | ||
u=randn(1,D)*sigma; v=randn(1,D); | ||
step=u./abs(v).^(1/beta); LF=0.01*step; | ||
function LF = jLevyDistribution(beta,dim) | ||
nume = gamma(1 + beta) * sin(pi * beta / 2); | ||
deno = gamma((1 + beta) / 2) * beta * 2 ^ ((beta - 1) / 2); | ||
sigma = (nume / deno) ^ (1 / beta); | ||
u = randn(1,dim) * sigma; | ||
v = randn(1,dim); | ||
step = u ./ abs(v) .^ (1 / beta); | ||
LF = 0.01 * step; | ||
end | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,28 +1,33 @@ | ||
% Notation: This fitness function is for demonstration | ||
|
||
function fitness=jFitnessFunction(feat,label,X,HO) | ||
if sum(X==1)==0 | ||
fitness=inf; | ||
function cost = jFitnessFunction(feat,label,X,HO) | ||
if sum(X == 1) == 0 | ||
cost = inf; | ||
else | ||
fitness=jwrapperKNN(feat(:,X==1),label,HO); | ||
cost = jwrapperKNN(feat(:, X == 1),label,HO); | ||
end | ||
end | ||
|
||
|
||
function ER=jwrapperKNN(sFeat,label,HO) | ||
function error = jwrapperKNN(sFeat,label,HO) | ||
%---// Parameter setting for k-value of KNN // | ||
k=5; | ||
xtrain=sFeat(HO.training==1,:); ytrain=label(HO.training==1); | ||
xvalid=sFeat(HO.test==1,:); yvalid=label(HO.test==1); | ||
Model=fitcknn(xtrain,ytrain,'NumNeighbors',k); | ||
pred=predict(Model,xvalid); | ||
N=length(yvalid); correct=0; | ||
for i=1:N | ||
k = 5; | ||
|
||
xtrain = sFeat(HO.training == 1,:); | ||
ytrain = label(HO.training == 1); | ||
xvalid = sFeat(HO.test == 1,:); | ||
yvalid = label(HO.test == 1); | ||
|
||
Model = fitcknn(xtrain,ytrain,'NumNeighbors',k); | ||
pred = predict(Model,xvalid); | ||
num_valid = length(yvalid); | ||
correct = 0; | ||
for i = 1:num_valid | ||
if isequal(yvalid(i),pred(i)) | ||
correct=correct+1; | ||
correct = correct + 1; | ||
end | ||
end | ||
Acc=correct/N; | ||
ER=1-Acc; | ||
Acc = correct / num_valid; | ||
error = 1 - Acc; | ||
end | ||
|