- This toolbox offers Binary Harris Hawk Optimization ( BHHO )
- The
Main
file illustrates the example of how BHHO can solve the feature selection problem using benchmark data-set.
feat
: feature vector ( Instances x Features )label
: label vector ( Instances x 1 )N
: number of hawksmax_Iter
: maximum number of iterations
sFeat
: selected featuresSf
: selected feature indexNf
: number of selected featurescurve
: convergence curve
% Benchmark data set
load ionosphere.mat;
% Set 20% data as validation set
ho = 0.2;
% Hold-out method
HO = cvpartition(label,'HoldOut',ho);
% Parameter setting
N = 10;
max_Iter = 100;
% Binary Harris Hawk Optimization
[sFeat,Sf,Nf,curve] = jBHHO(feat,label,N,max_Iter,HO);
% Plot convergence curve
plot(1:max_Iter,curve);
xlabel('Number of iterations');
ylabel('Fitness Value');
title('BHHO'); grid on;
- MATLAB 2014 or above
- Statistics and Machine Learning Toolbox
@article{too2019new,
title={A new quadratic binary harris hawk optimization for feature selection},
author={Too, Jingwei and Abdullah, Abdul Rahim and Mohd Saad, Norhashimah},
journal={Electronics},
volume={8},
number={10},
pages={1130},
year={2019},
publisher={Multidisciplinary Digital Publishing Institute}
}