Skip to content

Latest commit

 

History

History
70 lines (53 loc) · 2.22 KB

File metadata and controls

70 lines (53 loc) · 2.22 KB

Binary Harris Hawk Optimization for Feature Selection

View Binary Harris Hawk Optimization for Feature Selection on File Exchange License GitHub release

Wheel

Introduction

  • This toolbox offers Binary Harris Hawk Optimization ( BHHO )
  • The Main file illustrates the example of how BHHO can solve the feature selection problem using benchmark data-set.

Input

  • feat : feature vector ( Instances x Features )
  • label : label vector ( Instances x 1 )
  • N : number of hawks
  • max_Iter : maximum number of iterations

Output

  • sFeat : selected features
  • Sf : selected feature index
  • Nf : number of selected features
  • curve : convergence curve

Example

% Benchmark data set 
load ionosphere.mat; 

% Set 20% data as validation set
ho = 0.2; 
% Hold-out method
HO = cvpartition(label,'HoldOut',ho);

% Parameter setting
N        = 10; 
max_Iter = 100;
% Binary Harris Hawk Optimization
[sFeat,Sf,Nf,curve] = jBHHO(feat,label,N,max_Iter,HO);

% Plot convergence curve
plot(1:max_Iter,curve);
xlabel('Number of iterations');
ylabel('Fitness Value');
title('BHHO'); grid on;

Requirement

  • MATLAB 2014 or above
  • Statistics and Machine Learning Toolbox

Cite As

@article{too2019new,
  title={A new quadratic binary harris hawk optimization for feature selection},
  author={Too, Jingwei and Abdullah, Abdul Rahim and Mohd Saad, Norhashimah},
  journal={Electronics},
  volume={8},
  number={10},
  pages={1130},
  year={2019},
  publisher={Multidisciplinary Digital Publishing Institute}
}