Skip to content

Reproduce bioinformatics analysis for the paper Meyer, K. et al., Cell, 2018.

Notifications You must be signed in to change notification settings

BIMSBbioinfo/collab_meyer_selbach_glut1

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 

Repository files navigation

The purpose of this repository is to provide the scripts that are used to produce the figures related to the analysis of disease-causing mutations affecting short linear motif content in transmembrane proteins and also the analysis of gain/loss of short linear motif mediated protein interactions based on the peptide array analysis as documented in the paper Meyer et al, Cell, 2018.

See paper: https://www.sciencedirect.com/science/article/pii/S0092867418310353

Vignettes:

motif_gains_transmembrane_proteins

The Rmarkdown scripts in this folder can be run to reproduce figures 7B, 7C, S6B, and S6C from the paper.

Requirements

The vignettes are implemented in R and makes use of various CRAN and Bioconductor packages. It also depends on the disorder prediction tool IUPred.

slimR package

install.packages('devtools') devtools::install_github('BIMSBbioinfo/slimR')

CRAN packages

install.packages(c('BiocManager', 'rmarkdown', 'knitr', 'data.table', 'ggplot2', 'ggrepel', 'pbapply', 'stringi'))

Bioconductor packages

BiocManager::install(c('Biostrings', 'biomaRt', 'rtracklayer', 'GenomicRanges'))

IUPred Disorder Predictor

IUPred source code can be dowloaded from here: http://iupred.enzim.hu/Downloads.php . After unpacking the source code, cd to the src directory. Compile the code with "cc iupred.c -o iupred"

motif_gains_TM_proteins.humsavar.Rmd

This vignette shows how to reproduce Figures 7B and 7C from Meyer et al.

To render this vignette type:

Rscript ./vignettes/motif_gains_transmembrane_proteins/render.vignette.R \ ./vignettes/motif_gains_transmembrane_proteins/motif_gains_TM_proteins.humsavar.Rmd \ ./data

motif_gains_TM_proteins.clinvar.Rmd

This vignette shows how to reproduce Figures S6B and S6C from Meyer et al.

To render this vignette type:

Rscript ./vignettes/motif_gains_transmembrane_proteins/render.vignette.R \ ./vignettes/motif_gains_transmembrane_proteins/motif_gains_TM_proteins.clinvar.Rmd \ ./data

peptideArrayAnalysis

The scripts in this folder reproduce the analysis of peptide array pull-down experiment analysis results, in particular Figure S2B and Data S1.

Required R packages

The required R packages can be installed via:

slimR package from github:

install.packages('devtools')

devtools::install_github('BIMSBbioinfo/slimR')

packages from CRAN:

install.packages(c('cowplot', 'data.table', 'DT', 'ggplot2', 'ggnetwork', 'intergraph', 'ggsignif', 'rmarkdown', 'DT'))

Description

The script preprocess_peptideArray_table.R preprocesses the peptide pull-down results table, which is at ./data/20170522_Neuroarray_results.tsv.

The second script findSLiMDomainPairs.R looks for motif gains/losses in mutant peptides with respect to the wild-type peptides and associates theses changes to PFAM domains in the detected proteins as gained/lost interaction partners of the peptides.

The rmarkdown script peptideArray_manuscript_figures.Rmd reproduces the figure S2B and supplementary data file Data S1 from the paper.

The R script render.vignette.R is used to run the Rmarkdown script.

Step by step: how to run the peptide array analysis

Assuming the current directory as the top-level source directory.

  1. Preprocess the peptide pull-down result table

Rscript vignettes/peptideArrayAnalysis/preprocess_peptideArray_table.R ./data

  1. Associate slims to PFAM domains

Rscript vignettes/peptideArrayAnalysis/findSLiMDomainPairs.R ./data

  1. Render the manuscript figures/tables

Rscript ./vignettes/peptideArrayAnalysis/render.vignette.R \ ./vignettes/peptideArrayAnalysis/peptideArray_manuscript_figures.Rmd \ ./data

The output is a pdf file named network_data.clustering_goterms.pdf and an html file named peptideArray_manuscript_figures.html.

Releases

No releases published

Packages

No packages published