Topic modeling is your turf too.
Contextual topic models with representations from transformers.
- Implementations of transformer-based topic models:
- Semantic Signal Separation - S³ 🧭
- KeyNMF 🔑
- GMM 💎
- Clustering Topic Models: BERTopic and Top2Vec
- Autoencoding Topic Models: CombinedTM and ZeroShotTM
- FASTopic
- Dynamic, Online and Hierarchical Topic Modeling
- Streamlined scikit-learn compatible API 🛠️
- Easy topic interpretation 🔍
- Automated topic naming with LLMs
- Topic modeling with keyphrases 🔑
- Lemmatization and Stemming
- Visualization with topicwizard 🖌️
You can now use a set of custom vectorizers for topic modeling over phrases, as well as lemmata and stems.
from turftopic import KeyNMF
from turftopic.vectorizers.spacy import NounPhraseCountVectorizer
model = KeyNMF(
n_components=10,
vectorizer=NounPhraseCountVectorizer("en_core_web_sm"),
)
model.fit(corpus)
model.print_topics()
Topic ID | Highest Ranking |
---|---|
... | |
3 | fanaticism, theism, fanatism, all fanatism, theists, strong theism, strong atheism, fanatics, precisely some theists, all theism |
4 | religion foundation darwin fish bumper stickers, darwin fish, atheism, 3d plastic fish, fish symbol, atheist books, atheist organizations, negative atheism, positive atheism, atheism index |
... |
Turftopic now also comes with a Chinese vectorizer for easier use, as well as a generalist multilingual vectorizer.
from turftopic.vectorizers.chinese import default_chinese_vectorizer
from turftopic.vectorizers.spacy import TokenCountVectorizer
chinese_vectorizer = default_chinese_vectorizer()
arabic_vectorizer = TokenCountVectorizer("ar", remove_stopwords=True)
danish_vectorizer = TokenCountVectorizer("da", remove_stopwords=True)
...
Basics (Documentation)
Turftopic can be installed from PyPI.
pip install turftopic
If you intend to use CTMs, make sure to install the package with Pyro as an optional dependency.
pip install turftopic[pyro-ppl]
Turftopic's models follow the scikit-learn API conventions, and as such they are quite easy to use if you are familiar with scikit-learn workflows.
Here's an example of how you use KeyNMF, one of our models on the 20Newsgroups dataset from scikit-learn.
from sklearn.datasets import fetch_20newsgroups
newsgroups = fetch_20newsgroups(
subset="all",
remove=("headers", "footers", "quotes"),
)
corpus = newsgroups.data
Turftopic also comes with interpretation tools that make it easy to display and understand your results.
from turftopic import KeyNMF
model = KeyNMF(20).fit(corpus)
Turftopic comes with a number of pretty printing utilities for interpreting the models.
To see the highest the most important words for each topic, use the print_topics()
method.
model.print_topics()
Topic ID | Top 10 Words |
---|---|
0 | armenians, armenian, armenia, turks, turkish, genocide, azerbaijan, soviet, turkey, azerbaijani |
1 | sale, price, shipping, offer, sell, prices, interested, 00, games, selling |
2 | christians, christian, bible, christianity, church, god, scripture, faith, jesus, sin |
3 | encryption, chip, clipper, nsa, security, secure, privacy, encrypted, crypto, cryptography |
.... |
# Print highest ranking documents for topic 0
model.print_representative_documents(0, corpus, document_topic_matrix)
Document | Score |
---|---|
Poor 'Poly'. I see you're preparing the groundwork for yet another retreat from your... | 0.40 |
Then you must be living in an alternate universe. Where were they? An Appeal to Mankind During the... | 0.40 |
It is 'Serdar', 'kocaoglan'. Just love it. Well, it could be your head wasn't screwed on just right... | 0.39 |
model.print_topic_distribution(
"I think guns should definitely banned from all public institutions, such as schools."
)
Topic name | Score |
---|---|
7_gun_guns_firearms_weapons | 0.05 |
17_mail_address_email_send | 0.00 |
3_encryption_chip_clipper_nsa | 0.00 |
19_baseball_pitching_pitcher_hitter | 0.00 |
11_graphics_software_program_3d | 0.00 |
Turftopic now allows you to automatically assign human readable names to topics using LLMs or n-gram retrieval!
from turftopic import KeyNMF
from turftopic.namers import OpenAITopicNamer
model = KeyNMF(10).fit(corpus)
namer = OpenAITopicNamer("gpt-4o-mini")
model.rename_topics(namer)
model.print_topics()
Topic ID | Topic Name | Highest Ranking |
---|---|---|
0 | Operating Systems and Software | windows, dos, os, ms, microsoft, unix, nt, memory, program, apps |
1 | Atheism and Belief Systems | atheism, atheist, atheists, belief, religion, religious, theists, beliefs, believe, faith |
2 | Computer Architecture and Performance | motherboard, ram, memory, cpu, bios, isa, speed, 486, bus, performance |
3 | Storage Technologies | disk, drive, scsi, drives, disks, floppy, ide, dos, controller, boot |
... |
Turftopic does not come with built-in visualization utilities, topicwizard, an interactive topic model visualization library, is compatible with all models from Turftopic.
pip install topic-wizard
By far the easiest way to visualize your models for interpretation is to launch the topicwizard web app.
import topicwizard
topicwizard.visualize(corpus, model=model)
Alternatively you can use the Figures API in topicwizard for individual HTML figures.
- Kardos, M., Kostkan, J., Vermillet, A., Nielbo, K., Enevoldsen, K., & Rocca, R. (2024, June 13).
$S^3$ - Semantic Signal separation. arXiv.org. https://arxiv.org/abs/2406.09556 - Wu, X., Nguyen, T., Zhang, D. C., Wang, W. Y., & Luu, A. T. (2024). FASTopic: A Fast, Adaptive, Stable, and Transferable Topic Modeling Paradigm. ArXiv Preprint ArXiv:2405.17978.
- Grootendorst, M. (2022, March 11). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv.org. https://arxiv.org/abs/2203.05794
- Angelov, D. (2020, August 19). Top2VEC: Distributed representations of topics. arXiv.org. https://arxiv.org/abs/2008.09470
- Bianchi, F., Terragni, S., & Hovy, D. (2020, April 8). Pre-training is a Hot Topic: Contextualized Document Embeddings Improve Topic Coherence. arXiv.org. https://arxiv.org/abs/2004.03974
- Bianchi, F., Terragni, S., Hovy, D., Nozza, D., & Fersini, E. (2021). Cross-lingual Contextualized Topic Models with Zero-shot Learning. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume (pp. 1676–1683). Association for Computational Linguistics.
- Kristensen-McLachlan, R. D., Hicke, R. M. M., Kardos, M., & Thunø, M. (2024, October 16). Context is Key(NMF): Modelling Topical Information Dynamics in Chinese Diaspora Media. arXiv.org. https://arxiv.org/abs/2410.12791