Skip to content

Projects for Udacity Machine Learning Engineer Nanodegree 优达学城机器学习工程师纳米学位项目

Notifications You must be signed in to change notification settings

twang18/MLND_Projects

Repository files navigation

机器学习工程师纳米学位

Machine Learning Engineer Nanodegree

学位概述

该学位旨在让学员成长为一名机器学习工程师,在各领域如金融,健康,教育等行业中,应用机器学习的各种算法来建模。学位完成所需的时长约为400小时。

项目集目录

  1. 预测世界料理

    所需技能:python, jupyter notebook, numpy, sklearn, 自然语言处理,特征提取,网格搜索,逻辑回归

  2. 预测波士顿房价

    所需技能:python, jupyter notebook, sklearn,统计,特征选择,网格搜索,交叉验证,训练模型,分析模型

  3. 监督学习:为慈善机构寻找捐助者

    所需技能:python, jupyter notebook, sklearn,特征工程,数据预处理,探索性数据分析及可视化,比较各监督学习模型,训练模型并优化模型,参数调优,网格搜索

  4. 非监督学习:创建客户细分

    所需技能:python, jupyter notebook, sklearn,特征工程,特征缩放,异常值检测, PCA,比较各非监督学习模型,创建聚类及可视化,模型回归与分类

  5. 深度学习: CNN算法进行狗的品种分类

    所需技能:卷积神经网络,keras, 迁移学习,CNN模型训练及参数优化,人脸检测,深度学习,python

  6. 强化学习:训练机器人走迷宫

    所需技能:强化学习,Q-learning算法,python, 线性代数

  7. 毕业项目:预测欧洲连锁药妆店Rossmann的营业额

    所需技能:数据挖掘,数据预处理,特征工程与选择,算法比较、选择与参数优化,模型回归,数据可视化,商业分析

Project Portfolio

Predict Your Cuisine

  • Load the data set (39774 rows for train set and 9944 rows for test set) from Kaggle competition; perform statistical analysis
  • Apply NLP techniques to pre-process the cuisine and ingredients
  • Perform Logistic Regression and grid search to train and optimize the model and then make prediction for the test set

Predict Boston’s Housing Price

  • Perform statistical analysis and feature engineering; split the data set and train the model with decision tree algorithm
  • Perform grid search and cross validation to optimize the model and make price prediction
  • Evaluate the coefficient of determination, the robustness and the applicability of the model

Supervised Learning – Finding Donors for CharityML

  • Perform EDA and data wrangling on the data set
  • Select 3 algorithms (Decision Tree, SVM and Adaboost) from 7 supervised learning techniques to train the model, compare and evaluate the models using different metrics and select the optimal model
  • Optimize the model and make the prediction

Unsupervised Learning – Customer Segments

  • Carry out feature engineering and scaling, outliers detection and removal
  • Perform PCA, compare unsupervised models and create K-means clusters
  • Conduct clusters and data distribution visualization, and A/B test discussion

Deep Learning – Dog Breed Classifier

  • Use OpenCV's classifier to detect human faces
  • Pre-process the data for CNN architecture
  • Build a CNN from scratch to predict the dogs' breeds
  • Apply a CNN model for transfer learning
  • Write and test my algorithm based on the optimum CNN model selected to classify dog breeds

Reinforcement Learning – Robot Maze

  • Create the maze; apply Q-learning algorithm to guide the robot’s movement in the maze
  • Use the most updated reinforcement technique to train a robot in a maze and avoid traps

Capstone Project – Predict Rossmann Store Sales

  • Download data sets from Kaggle and perform data wrangling preprocessing, EDA and data visualization
  • Perform feature engineering; conduct comparison, selection and optimize of different algorithms
  • Train the model and fine-tune the parameters to make prediction and visualization

About

Projects for Udacity Machine Learning Engineer Nanodegree 优达学城机器学习工程师纳米学位项目

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published