该学位旨在让学员成长为一名机器学习工程师,在各领域如金融,健康,教育等行业中,应用机器学习的各种算法来建模。学位完成所需的时长约为400小时。
-
预测世界料理
所需技能:python, jupyter notebook, numpy, sklearn, 自然语言处理,特征提取,网格搜索,逻辑回归
-
预测波士顿房价
所需技能:python, jupyter notebook, sklearn,统计,特征选择,网格搜索,交叉验证,训练模型,分析模型
-
监督学习:为慈善机构寻找捐助者
所需技能:python, jupyter notebook, sklearn,特征工程,数据预处理,探索性数据分析及可视化,比较各监督学习模型,训练模型并优化模型,参数调优,网格搜索
-
非监督学习:创建客户细分
所需技能:python, jupyter notebook, sklearn,特征工程,特征缩放,异常值检测, PCA,比较各非监督学习模型,创建聚类及可视化,模型回归与分类
-
深度学习: CNN算法进行狗的品种分类
所需技能:卷积神经网络,keras, 迁移学习,CNN模型训练及参数优化,人脸检测,深度学习,python
-
强化学习:训练机器人走迷宫
所需技能:强化学习,Q-learning算法,python, 线性代数
-
毕业项目:预测欧洲连锁药妆店Rossmann的营业额
所需技能:数据挖掘,数据预处理,特征工程与选择,算法比较、选择与参数优化,模型回归,数据可视化,商业分析
Predict Your Cuisine
- Load the data set (39774 rows for train set and 9944 rows for test set) from Kaggle competition; perform statistical analysis
- Apply NLP techniques to pre-process the cuisine and ingredients
- Perform Logistic Regression and grid search to train and optimize the model and then make prediction for the test set
Predict Boston’s Housing Price
- Perform statistical analysis and feature engineering; split the data set and train the model with decision tree algorithm
- Perform grid search and cross validation to optimize the model and make price prediction
- Evaluate the coefficient of determination, the robustness and the applicability of the model
Supervised Learning – Finding Donors for CharityML
- Perform EDA and data wrangling on the data set
- Select 3 algorithms (Decision Tree, SVM and Adaboost) from 7 supervised learning techniques to train the model, compare and evaluate the models using different metrics and select the optimal model
- Optimize the model and make the prediction
Unsupervised Learning – Customer Segments
- Carry out feature engineering and scaling, outliers detection and removal
- Perform PCA, compare unsupervised models and create K-means clusters
- Conduct clusters and data distribution visualization, and A/B test discussion
Deep Learning – Dog Breed Classifier
- Use OpenCV's classifier to detect human faces
- Pre-process the data for CNN architecture
- Build a CNN from scratch to predict the dogs' breeds
- Apply a CNN model for transfer learning
- Write and test my algorithm based on the optimum CNN model selected to classify dog breeds
Reinforcement Learning – Robot Maze
- Create the maze; apply Q-learning algorithm to guide the robot’s movement in the maze
- Use the most updated reinforcement technique to train a robot in a maze and avoid traps
Capstone Project – Predict Rossmann Store Sales
- Download data sets from Kaggle and perform data wrangling preprocessing, EDA and data visualization
- Perform feature engineering; conduct comparison, selection and optimize of different algorithms
- Train the model and fine-tune the parameters to make prediction and visualization