-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
176 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
# 🐍 Python Array API | ||
|
||
NGFF-Zarr supports conversion of any NumPy array-like object that follows the | ||
[Python Array API Standard](https://data-apis.org/array-api/latest/) into | ||
OME-Zarr. This includes such objects an NumPy `ndarray`'s, Dask Arrays, PyTorch | ||
Tensors, CuPy arrays, Zarr array, etc. | ||
|
||
## Array to NGFF Image | ||
|
||
Convert the array to an `NgffImage`, which is a standard | ||
[Python dataclass](https://docs.python.org/3/library/dataclasses.html) that | ||
represents an OME-Zarr image for a single scale. | ||
|
||
When creating the image from the array, you can specify | ||
|
||
- names of the `dims` from `{‘t’, ‘z’, ‘y’, ‘x’, ‘c’}` | ||
- the `scale`, the pixel spacing for the spatial dims | ||
- the `translation`, the origin or offset of the center of the first pixel | ||
- a `name` for the image | ||
- and `axes_units` with | ||
[UDUNITS-2 identifiers](https://ngff.openmicroscopy.org/latest/#axes-md) | ||
|
||
```python | ||
>>> # Load an image as a NumPy array | ||
>>> from imageio.v3 import imread | ||
>>> data = imread('cthead1.png') | ||
>>> print(type(data)) | ||
<class 'numpy.ndarray'> | ||
``` | ||
|
||
Specify optional additional metadata with `to_ngff_zarr`. | ||
|
||
```python | ||
>>> import ngff_zarr as nz | ||
>>> image = nz.to_ngff_image(data, | ||
dims=['y', 'x'], | ||
scale={'y': 1.0, 'x': 1.0}, | ||
translation={'y': 0.0, 'x': 0.0}) | ||
>>> print(image) | ||
NgffImage( | ||
data=dask.array<array, shape=(256, 256), | ||
dtype=uint8, | ||
chunksize=(256, 256), chunktype=numpy.ndarray>, | ||
dims=['y', 'x'], | ||
scale={'y': 1.0, 'x': 1.0}, | ||
translation={'y': 0.0, 'x': 0.0}, | ||
name='image', | ||
axes_units=None, | ||
computed_callbacks=[] | ||
) | ||
``` | ||
|
||
The image data is nested in a lazy `dask.array` and chucked. | ||
|
||
If `dims`, `scale`, or `translation` are not specified, NumPy-compatible | ||
defaults are used. | ||
|
||
## Generate multiscales | ||
|
||
OME-Zarr represents images in a chunked, multiscale data structure. Use | ||
`to_multiscales` to build a task graph that will produce a chunked, multiscale | ||
image pyramid. `to_multiscales` has optional `scale_factors` and `chunks` | ||
parameters. An [antialiasing method](./methods.md) can also be prescribed. | ||
|
||
```python | ||
>>> multiscales = nz.to_multiscales(image, | ||
scale_factors=[2,4], | ||
chunks=64) | ||
>>> print(multiscales) | ||
Multiscales( | ||
images=[ | ||
NgffImage( | ||
data=dask.array<rechunk-merge, shape=(256, 256), dtype=uint8,chunksize=(64, 64), chunktype=numpy.ndarray>, | ||
dims=['y', 'x'], | ||
scale={'y': 1.0, 'x': 1.0}, | ||
translation={'y': 0.0, 'x': 0.0}, | ||
name='image', | ||
axes_units=None, | ||
computed_callbacks=[] | ||
), | ||
NgffImage( | ||
data=dask.array<rechunk-merge, shape=(128, 128), dtype=uint8, | ||
chunksize=(64, 64), chunktype=numpy.ndarray>, | ||
dims=['y', 'x'], | ||
scale={'x': 2.0, 'y': 2.0}, | ||
translation={'x': 0.5, 'y': 0.5}, | ||
name='image', | ||
axes_units=None, | ||
computed_callbacks=[] | ||
), | ||
NgffImage( | ||
data=dask.array<rechunk-merge, shape=(64, 64), dtype=uint8, | ||
chunksize=(64, 64), chunktype=numpy.ndarray>, | ||
dims=['y', 'x'], | ||
scale={'x': 4.0, 'y': 4.0}, | ||
translation={'x': 1.5, 'y': 1.5}, | ||
name='image', | ||
axes_units=None, | ||
computed_callbacks=[] | ||
) | ||
], | ||
metadata=Metadata( | ||
axes=[ | ||
Axis(name='y', type='space', unit=None), | ||
Axis(name='x', type='space', unit=None) | ||
], | ||
datasets=[ | ||
Dataset( | ||
path='scale0/image', | ||
coordinateTransformations=[ | ||
Scale(scale=[1.0, 1.0], type='scale'), | ||
Translation( | ||
translation=[0.0, 0.0], | ||
type='translation' | ||
) | ||
] | ||
), | ||
Dataset( | ||
path='scale1/image', | ||
coordinateTransformations=[ | ||
Scale(scale=[2.0, 2.0], type='scale'), | ||
Translation( | ||
translation=[0.5, 0.5], | ||
type='translation' | ||
) | ||
] | ||
), | ||
Dataset( | ||
path='scale2/image', | ||
coordinateTransformations=[ | ||
Scale(scale=[4.0, 4.0], type='scale'), | ||
Translation( | ||
translation=[1.5, 1.5], | ||
type='translation' | ||
) | ||
] | ||
) | ||
], | ||
coordinateTransformations=None, | ||
name='image', | ||
version='0.4' | ||
), | ||
scale_factors=[2, 4], | ||
method=<Methods.ITKWASM_GAUSSIAN: 'itkwasm_gaussian'>, | ||
chunks={'y': 64, 'x': 64} | ||
) | ||
``` | ||
|
||
The `Multiscales` dataclass stores all the images and their metadata for each | ||
scale according the OME-Zarr data model. Note that the correct `scale` and | ||
`translation` for each scale are automatically computed. | ||
|
||
## Write to Zarr | ||
|
||
To write the multiscales to Zarr, use `to_ngff_zarr`. | ||
|
||
```python | ||
nz.to_ngff_zarr('cthead1.ome.zarr', multiscales) | ||
``` | ||
|
||
Use the `.ome.zarr` extension for local directory stores by convention. | ||
|
||
Any other | ||
[Zarr store type](https://zarr.readthedocs.io/en/stable/api/storage.html) can | ||
also be used. | ||
|
||
The multiscales will be computed and written out-of-core, limiting memory usage. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -17,7 +17,8 @@ pip install "ngff-zarr[cli]" | |
```python | ||
import micropip | ||
await micropip.install('ngff-zarr') | ||
``` | ||
|
||
::: | ||
|
||
:::: | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters