-
Notifications
You must be signed in to change notification settings - Fork 117
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #92 from liadomide/trunk
Add model class ReducedWongWangExcIOInhI
- Loading branch information
Showing
4 changed files
with
320 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,309 @@ | ||
# -*- coding: utf-8 -*- | ||
# | ||
# | ||
# TheVirtualBrain-Scientific Package. This package holds all simulators, and | ||
# analysers necessary to run brain-simulations. You can use it stand alone or | ||
# in conjunction with TheVirtualBrain-Framework Package. See content of the | ||
# documentation-folder for more details. See also http://www.thevirtualbrain.org | ||
# | ||
# (c) 2012-2017, Baycrest Centre for Geriatric Care ("Baycrest") and others | ||
# | ||
# This program is free software: you can redistribute it and/or modify it under the | ||
# terms of the GNU General Public License as published by the Free Software Foundation, | ||
# either version 3 of the License, or (at your option) any later version. | ||
# This program is distributed in the hope that it will be useful, but WITHOUT ANY | ||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A | ||
# PARTICULAR PURPOSE. See the GNU General Public License for more details. | ||
# You should have received a copy of the GNU General Public License along with this | ||
# program. If not, see <http://www.gnu.org/licenses/>. | ||
# | ||
# | ||
# CITATION: | ||
# When using The Virtual Brain for scientific publications, please cite it as follows: | ||
# | ||
# Paula Sanz Leon, Stuart A. Knock, M. Marmaduke Woodman, Lia Domide, | ||
# Jochen Mersmann, Anthony R. McIntosh, Viktor Jirsa (2013) | ||
# The Virtual Brain: a simulator of primate brain network dynamics. | ||
# Frontiers in Neuroinformatics (7:10. doi: 10.3389/fninf.2013.00010) | ||
|
||
""" | ||
Models based on Wong-Wang's work. | ||
This one is meant to be used by TVB, with an excitatory and an inhibitory population, mutually coupled. | ||
Following Deco et al 2014. | ||
.. moduleauthor:: Dionysios Perdikis <dionperd@gmail.com> | ||
""" | ||
|
||
from numba import guvectorize, float64 | ||
from tvb.simulator.models.base import numpy, basic, arrays, ModelNumbaDfun, LOG | ||
|
||
|
||
@guvectorize([(float64[:],)*21], '(n),(m)' + ',()'*18 + '->(n)', nopython=True) | ||
def _numba_dfun(S, c, ae, be, de, ge, te, wp, we, jn, ai, bi, di, gi, ti, wi, ji, g, l, io, dx): | ||
"Gufunc for reduced Wong-Wang model equations." | ||
|
||
cc = g[0]*jn[0]*c[0] | ||
|
||
if S[0] < 0.0: | ||
S_e = 0.0 # - S[0] # TODO: clarify the boundary to be reflective or saturated!!! | ||
elif S[0] > 1.0: | ||
S_e = 1.0 # - S[0] # TODO: clarify the boundary to be reflective or saturated!!! | ||
else: | ||
S_e = S[0] | ||
|
||
if S[1] < 0.0: | ||
S_i = 0.0 # - S[1] TODO: clarify the boundary to be reflective or saturated!!! | ||
elif S[1] > 1.0: | ||
S_i = 1.0 # - S[1] TODO: clarify the boundary to be reflective or saturated!!! | ||
else: | ||
S_i = S[1] | ||
|
||
jnSe = jn[0]*S_e | ||
x = wp[0]*jnSe - ji[0]*S_i + we[0]*io[0] + cc | ||
x = ae[0]*x - be[0] | ||
h = x / (1 - numpy.exp(-de[0]*x)) | ||
dx[0] = - (S_e / te[0]) + (1.0 - S_e) * h * ge[0] | ||
|
||
x = jnSe - S_i + wi[0]*io[0] + l[0]*cc | ||
x = ai[0]*x - bi[0] | ||
h = x / (1 - numpy.exp(-di[0]*x)) | ||
dx[1] = - (S_i / ti[0]) + h * gi[0] | ||
|
||
|
||
class ReducedWongWangExcIOInhI(ModelNumbaDfun): | ||
r""" | ||
.. [WW_2006] Kong-Fatt Wong and Xiao-Jing Wang, *A Recurrent Network | ||
Mechanism of Time Integration in Perceptual Decisions*. | ||
Journal of Neuroscience 26(4), 1314-1328, 2006. | ||
.. [DPA_2014] Deco Gustavo, Ponce Alvarez Adrian, Patric Hagmann, | ||
Gian Luca Romani, Dante Mantini, and Maurizio Corbetta. *How Local | ||
Excitation–Inhibition Ratio Impacts the Whole Brain Dynamics*. | ||
The Journal of Neuroscience 34(23), 7886 –7898, 2014. | ||
Equations taken from [DPA_2013]_ , page 11242 | ||
.. math:: | ||
x_{ek} &= w_p\,J_N \, S_{ek} - J_iS_{ik} + W_eI_o + GJ_N \mathbf\Gamma(S_{ek}, S_{ej}, u_{kj}),\\ | ||
H(x_{ek}) &= \dfrac{a_ex_{ek}- b_e}{1 - \exp(-d_e(a_ex_{ek} -b_e))},\\ | ||
\dot{S}_{ek} &= -\dfrac{S_{ek}}{\tau_e} + (1 - S_{ek}) \, \gammaH(x_{ek}) \, | ||
x_{ik} &= J_N \, S_{ek} - S_{ik} + W_iI_o + \lambdaGJ_N \mathbf\Gamma(S_{ik}, S_{ej}, u_{kj}),\\ | ||
H(x_{ik}) &= \dfrac{a_ix_{ik} - b_i}{1 - \exp(-d_i(a_ix_{ik} -b_i))},\\ | ||
\dot{S}_{ik} &= -\dfrac{S_{ik}}{\tau_i} + \gamma_iH(x_{ik}) \, | ||
""" | ||
_ui_name = "Reduced Wong-Wang with Excitatory and Inhibitory Coupled Populations" | ||
ui_configurable_parameters = ['a_e', 'b_e', 'd_e', 'gamma_e', 'tau_e', 'W_e', 'w_p', 'J_N', | ||
'a_i', 'b_i', 'd_i', 'gamma_i', 'tau_i', 'W_i', 'J_i', | ||
'I_o', 'G', 'lamda'] | ||
|
||
# Define traited attributes for this model, these represent possible kwargs. | ||
|
||
a_e = arrays.FloatArray( | ||
label=":math:`a_e`", | ||
default=numpy.array([310., ]), | ||
range=basic.Range(lo=0., hi=500., step=1.), | ||
doc="[n/C]. Excitatory population input gain parameter, chosen to fit numerical solutions.", | ||
order=1) | ||
|
||
b_e = arrays.FloatArray( | ||
label=":math:`b_e`", | ||
default=numpy.array([125., ]), | ||
range=basic.Range(lo=0., hi=200., step=1.), | ||
doc="[Hz]. Excitatory population input shift parameter chosen to fit numerical solutions.", | ||
order=2) | ||
|
||
d_e = arrays.FloatArray( | ||
label=":math:`d_e`", | ||
default=numpy.array([0.160, ]), | ||
range=basic.Range(lo=0.0, hi=0.2, step=0.001), | ||
doc="""[s]. Excitatory population input scaling parameter chosen to fit numerical solutions.""", | ||
order=3) | ||
|
||
gamma_e = arrays.FloatArray( | ||
label=r":math:`\gamma_e`", | ||
default=numpy.array([0.641/1000, ]), | ||
range=basic.Range(lo=0.0, hi=1.0/1000, step=0.01/1000), | ||
doc="""Excitatory population kinetic parameter""", | ||
order=4) | ||
|
||
tau_e = arrays.FloatArray( | ||
label=r":math:`\tau_e`", | ||
default=numpy.array([100., ]), | ||
range=basic.Range(lo=50., hi=150., step=1.), | ||
doc="""[ms]. Excitatory population NMDA decay time constant.""", | ||
order=5) | ||
|
||
w_p = arrays.FloatArray( | ||
label=r":math:`w_p`", | ||
default=numpy.array([1.4, ]), | ||
range=basic.Range(lo=0.0, hi=2.0, step=0.01), | ||
doc="""Excitatory population recurrence weight""", | ||
order=6) | ||
|
||
J_N = arrays.FloatArray( | ||
label=r":math:`J_{N}`", | ||
default=numpy.array([0.15, ]), | ||
range=basic.Range(lo=0.001, hi=0.5, step=0.001), | ||
doc="""[nA] NMDA current""", | ||
order=7) | ||
|
||
W_e = arrays.FloatArray( | ||
label=r":math:`W_e`", | ||
default=numpy.array([1.0, ]), | ||
range=basic.Range(lo=0.0, hi=2.0, step=0.01), | ||
doc="""Excitatory population external input scaling weight""", | ||
order=8) | ||
|
||
a_i = arrays.FloatArray( | ||
label=":math:`a_i`", | ||
default=numpy.array([615., ]), | ||
range=basic.Range(lo=0., hi=1000., step=1.), | ||
doc="[n/C]. Inhibitory population input gain parameter, chosen to fit numerical solutions.", | ||
order=9) | ||
|
||
b_i = arrays.FloatArray( | ||
label=":math:`b_i`", | ||
default=numpy.array([177.0, ]), | ||
range=basic.Range(lo=0.0, hi=200.0, step=1.0), | ||
doc="[Hz]. Inhibitory population input shift parameter chosen to fit numerical solutions.", | ||
order=10) | ||
|
||
d_i = arrays.FloatArray( | ||
label=":math:`d_i`", | ||
default=numpy.array([0.087, ]), | ||
range=basic.Range(lo=0.0, hi=0.2, step=0.001), | ||
doc="""[s]. Inhibitory population input scaling parameter chosen to fit numerical solutions.""", | ||
order=11) | ||
|
||
gamma_i = arrays.FloatArray( | ||
label=r":math:`\gamma_i`", | ||
default=numpy.array([1.0/1000, ]), | ||
range=basic.Range(lo=0.0, hi=2.0/1000, step=0.01/1000), | ||
doc="""Inhibitory population kinetic parameter""", | ||
order=12) | ||
|
||
tau_i = arrays.FloatArray( | ||
label=r":math:`\tau_i`", | ||
default=numpy.array([10., ]), | ||
range=basic.Range(lo=50., hi=150., step=1.0), | ||
doc="""[ms]. Inhibitory population NMDA decay time constant.""", | ||
order=13) | ||
|
||
J_i = arrays.FloatArray( | ||
label=r":math:`J_{i}`", | ||
default=numpy.array([1.0, ]), | ||
range=basic.Range(lo=0.001, hi=2.0, step=0.001), | ||
doc="""[nA] Local inhibitory current""", | ||
order=14) | ||
|
||
W_i = arrays.FloatArray( | ||
label=r":math:`W_i`", | ||
default=numpy.array([0.7, ]), | ||
range=basic.Range(lo=0.0, hi=1.0, step=0.01), | ||
doc="""Inhibitory population external input scaling weight""", | ||
order=15) | ||
|
||
I_o = arrays.FloatArray( | ||
label=":math:`I_{o}`", | ||
default=numpy.array([0.382, ]), | ||
range=basic.Range(lo=0.0, hi=1.0, step=0.001), | ||
doc="""[nA]. Effective external input""", | ||
order=16) | ||
|
||
G = arrays.FloatArray( | ||
label=":math:`G`", | ||
default=numpy.array([2.0, ]), | ||
range=basic.Range(lo=0.0, hi=10.0, step=0.01), | ||
doc="""Global coupling scaling""", | ||
order=17) | ||
|
||
lamda = arrays.FloatArray( | ||
label=":math:`\lambda`", | ||
default=numpy.array([0.0, ]), | ||
range=basic.Range(lo=0.0, hi=1.0, step=0.01), | ||
doc="""Inhibitory global coupling scaling""", | ||
order=18) | ||
|
||
state_variable_range = basic.Dict( | ||
label="State variable ranges [lo, hi]", | ||
default={"S_e": numpy.array([0.0, 1.0]), "S_i": numpy.array([0.0, 1.0])}, | ||
doc="Population firing rate", | ||
order=22 | ||
) | ||
|
||
variables_of_interest = basic.Enumerate( | ||
label="Variables watched by Monitors", | ||
options=['S_e', 'S_i'], | ||
default=['S_e', 'S_i'], | ||
select_multiple=True, | ||
doc="""default state variables to be monitored""", | ||
order=23) | ||
|
||
state_variables = ['S_e', 'S_i'] | ||
_nvar = 2 | ||
cvar = numpy.array([0], dtype=numpy.int32) | ||
|
||
def configure(self): | ||
""" """ | ||
super(ReducedWongWangExcIOInhI, self).configure() | ||
self.update_derived_parameters() | ||
|
||
def _numpy_dfun(self, state_variables, coupling, local_coupling=0.0): | ||
r""" | ||
Equations taken from [DPA_2013]_ , page 11242 | ||
.. math:: | ||
x_{ek} &= w_p\,J_N \, S_{ek} - J_iS_{ik} + W_eI_o + GJ_N \mathbf\Gamma(S_{ek}, S_{ej}, u_{kj}),\\ | ||
H(x_{ek}) &= \dfrac{a_ex_{ek}- b_e}{1 - \exp(-d_e(a_ex_{ek} -b_e))},\\ | ||
\dot{S}_{ek} &= -\dfrac{S_{ek}}{\tau_e} + (1 - S_{ek}) \, \gammaH(x_{ek}) \, | ||
x_{ik} &= J_N \, S_{ek} - S_{ik} + W_iI_o + \lambdaGJ_N \mathbf\Gamma(S_{ik}, S_{ej}, u_{kj}),\\ | ||
H(x_{ik}) &= \dfrac{a_ix_{ik} - b_i}{1 - \exp(-d_i(a_ix_{ik} -b_i))},\\ | ||
\dot{S}_{ik} &= -\dfrac{S_{ik}}{\tau_i} + \gamma_iH(x_{ik}) \, | ||
""" | ||
S = state_variables[:, :] | ||
S[S < 0] = 0. | ||
S[S > 1] = 1. | ||
|
||
c_0 = coupling[0, :] | ||
|
||
# if applicable | ||
lc_0 = local_coupling * S[0] | ||
|
||
coupling = self.G * self.J_N * (c_0 + lc_0) | ||
|
||
J_N_S_e = self.J_N * S[0] | ||
|
||
x_e = self.w_p * J_N_S_e - self.J_i * S[1] + self.W_e * self.I_o + coupling | ||
|
||
x_e = self.a_e * x_e - self.b_e | ||
H_e = x_e / (1 - numpy.exp(-self.d_e * x_e)) | ||
|
||
dS_e = - (S[0] / self.tau_e) + (1 - S[0]) * H_e * self.gamma_e | ||
|
||
x_i = J_N_S_e - S[1] + self.W_i * self.I_o + self.lamda * coupling | ||
|
||
x_i = self.a_i * x_i - self.b_i | ||
H_i = x_i / (1 - numpy.exp(-self.d_i * x_i)) | ||
|
||
dS_i = - (S[1] / self.tau_i) + H_i * self.gamma_i | ||
|
||
derivative = numpy.array([dS_e, dS_i]) | ||
|
||
return derivative | ||
|
||
def dfun(self, x, c, local_coupling=0.0, **kwargs): | ||
x_ = x.reshape(x.shape[:-1]).T | ||
c_ = c.reshape(c.shape[:-1]).T + local_coupling * x[0] | ||
deriv = _numba_dfun(x_, c_, | ||
self.a_e, self.b_e, self.d_e, self.gamma_e, self.tau_e, | ||
self.w_p, self.W_e, self.J_N, | ||
self.a_i, self.b_i, self.d_i, self.gamma_i, self.tau_i, | ||
self.W_i, self.J_i, | ||
self.G, self.lamda, self.I_o) | ||
return deriv.T[..., numpy.newaxis] | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters