-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added short description and installation
- Loading branch information
Showing
4 changed files
with
185 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
from typing import Literal | ||
import pytest | ||
import numpy as np | ||
import scipy.ndimage | ||
import scipy.stats | ||
import astropy.units as u | ||
import ndfilters | ||
|
||
|
||
@pytest.mark.parametrize( | ||
argnames="array", | ||
argvalues=[ | ||
np.random.random(5), | ||
np.random.random((5, 6)), | ||
np.random.random((5, 6, 7)) * u.mm, | ||
], | ||
) | ||
@pytest.mark.parametrize( | ||
argnames="size", | ||
argvalues=[2, (3,), (3, 4), (3, 4, 5)], | ||
) | ||
@pytest.mark.parametrize( | ||
argnames="axis", | ||
argvalues=[ | ||
None, | ||
0, | ||
-1, | ||
(0,), | ||
(-1,), | ||
(0, 1), | ||
(-2, -1), | ||
(0, 1, 2), | ||
(2, 1, 0), | ||
], | ||
) | ||
@pytest.mark.parametrize( | ||
argnames="mode", | ||
argvalues=[ | ||
"mirror", | ||
"nearest", | ||
"wrap", | ||
], | ||
) | ||
def test_variance_filter( | ||
array: np.ndarray, | ||
size: int | tuple[int, ...], | ||
axis: None | int | tuple[int, ...], | ||
mode: Literal["mirror", "nearest", "wrap", "truncate"], | ||
): | ||
kwargs = dict( | ||
array=array, | ||
size=size, | ||
axis=axis, | ||
mode=mode, | ||
) | ||
|
||
if axis is None: | ||
axis_normalized = tuple(range(array.ndim)) | ||
else: | ||
try: | ||
axis_normalized = np.core.numeric.normalize_axis_tuple( | ||
axis, ndim=array.ndim | ||
) | ||
except np.AxisError: | ||
with pytest.raises(np.AxisError): | ||
ndfilters.variance_filter(**kwargs) | ||
return | ||
|
||
if isinstance(size, int): | ||
size_normalized = (size,) * len(axis_normalized) | ||
else: | ||
size_normalized = size | ||
|
||
if len(size_normalized) != len(axis_normalized): | ||
with pytest.raises(ValueError): | ||
ndfilters.variance_filter(**kwargs) | ||
return | ||
|
||
result = ndfilters.variance_filter(**kwargs) | ||
|
||
size_scipy = [1] * array.ndim | ||
for i, ax in enumerate(axis_normalized): | ||
size_scipy[ax] = size_normalized[i] | ||
|
||
expected = scipy.ndimage.generic_filter( | ||
input=array, | ||
function=np.var, | ||
size=size_scipy, | ||
mode=mode, | ||
) | ||
|
||
if isinstance(result, u.Quantity): | ||
assert np.allclose(result.value, expected) | ||
assert result.unit == array.unit | ||
else: | ||
assert np.allclose(result, expected) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
from typing import Literal | ||
import numpy as np | ||
import numba | ||
import astropy.units as u | ||
import ndfilters | ||
|
||
__all__ = [ | ||
"variance_filter", | ||
] | ||
|
||
|
||
def variance_filter( | ||
array: np.ndarray | u.Quantity, | ||
size: int | tuple[int, ...], | ||
axis: None | int | tuple[int, ...] = None, | ||
where: bool | np.ndarray = True, | ||
mode: Literal["mirror", "nearest", "wrap", "truncate"] = "mirror", | ||
) -> np.ndarray: | ||
""" | ||
Calculate a multidimensional rolling variance. | ||
Parameters | ||
---------- | ||
array | ||
The input array to be filtered | ||
size | ||
The shape of the kernel over which the variance will be calculated. | ||
axis | ||
The axes over which to apply the kernel. | ||
Should either be a scalar or have the same number of items as `size`. | ||
If :obj:`None` (the default) the kernel spans every axis of the array. | ||
where | ||
An optional mask that can be used to exclude parts of the array during | ||
filtering. | ||
mode | ||
The method used to extend the input array beyond its boundaries. | ||
See :func:`scipy.ndimage.generic_filter` for the definitions. | ||
Currently, only "mirror", "nearest", "wrap", and "truncate" modes are | ||
supported. | ||
Returns | ||
------- | ||
A copy of the array with the variance filter applied. | ||
Examples | ||
-------- | ||
.. jupyter-execute:: | ||
import matplotlib.pyplot as plt | ||
import scipy.datasets | ||
import ndfilters | ||
img = scipy.datasets.ascent() | ||
img_filtered = ndfilters.variance_filter(img, size=21) | ||
fig, axs = plt.subplots(ncols=2, sharex=True, sharey=True) | ||
axs[0].set_title("original image"); | ||
axs[0].imshow(img, cmap="gray"); | ||
axs[1].set_title("filtered image"); | ||
axs[1].imshow(img_filtered, cmap="gray"); | ||
""" | ||
return ndfilters.generic_filter( | ||
array=array, | ||
function=_variance, | ||
size=size, | ||
axis=axis, | ||
where=where, | ||
mode=mode, | ||
) | ||
|
||
|
||
@numba.njit | ||
def _variance( | ||
array: np.ndarray, | ||
args: tuple[float], | ||
) -> float: | ||
return np.var(array) |