Skip to content

sliontc/jsfeat

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

jsfeat

JavaScript Computer Vision library

The project aim is to explore JS/HTML5 possibilities using modern & state-of-art computer vision algorithms.

Examples and Documentation

Features

  • Custom data structures
  • Basic image processing methods (grayscale, derivatives, box-blur, resample, etc.)
  • grayscale (Demo)
  • box blur (Demo)
  • gaussian blur (Demo)
  • equalize histogram (Demo)
  • canny edges (Demo)
  • sobel deriv (Demo)
  • scharr deriv (Demo)
  • find more at Examples and Documentation page
  • Linear Algebra module
  • LU (Gaussian elimination) solver
  • Cholesky solver
  • SVD decomposition, solver and pseudo-inverse
  • Eigen Vectors and Values
  • Multiview module (Demo)
  • Affine2D motion kernel
  • Homography2D motion kernel
  • RANSAC motion estimator
  • LMEDS motion estimator
  • Matrix Math module for various matrix operation such as traspose, multiply etc.
  • Features 2D
  • Fast Corners feature detector (Demo)
  • YAPE06 feature detector (Demo)
  • YAPE feature detector (Demo)
  • ORB feature descriptor (Demo)
  • Lucas-Kanade optical flow (Demo - click to add points)
  • HAAR object detector (Demo)
  • BBF object detector (Demo)

About

JavaScript Computer Vision library.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • JavaScript 100.0%