Skip to content

Detecting Frauds in Online Transactions using Anamoly Detection Techniques Such as Over Sampling and Under-Sampling as the ratio of Frauds is less than 0.00005 thus, simply applying Classification Algorithm may result in Overfitting

License

Notifications You must be signed in to change notification settings

sharmaroshan/Fraud-Detection-in-Online-Transactions

Repository files navigation

Fraud-Detection-in-Online-Transactions

Detecting Frauds in Online Transactions using Anamoly Detection Techniques Such as Over Sampling and Under-Sampling as the ratio of Frauds is less than 0.00005 thus, simply applying Classification Algorithm may result in Overfitting

Description

Context

There is a lack of public available datasets on financial services and specially in the emerging mobile money transactions domain. Financial datasets are important to many researchers and in particular to us performing research in the domain of fraud detection. Part of the problem is the intrinsically private nature of financial transactions, that leads to no publicly available datasets.

We present a synthetic dataset generated using the simulator called PaySim as an approach to such a problem. PaySim uses aggregated data from the private dataset to generate a synthetic dataset that resembles the normal operation of transactions and injects malicious behaviour to later evaluate the performance of fraud detection methods.

Content

PaySim simulates mobile money transactions based on a sample of real transactions extracted from one month of financial logs from a mobile money service implemented in an African country. The original logs were provided by a multinational company, who is the provider of the mobile financial service which is currently running in more than 14 countries all around the world.

This synthetic dataset is scaled down 1/4 of the original dataset and it is created just for Kaggle.

columns

This is a sample of 1 row with headers explanation:

1,PAYMENT,1060.31,C429214117,1089.0,28.69,M1591654462,0.0,0.0,0,0

step - maps a unit of time in the real world. In this case 1 step is 1 hour of time. Total steps 744 (30 days simulation).

type - CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER.

amount - amount of the transaction in local currency.

nameOrig - customer who started the transaction

oldbalanceOrg - initial balance before the transaction

newbalanceOrig - new balance after the transaction

nameDest - customer who is the recipient of the transaction

oldbalanceDest - initial balance recipient before the transaction. Note that there is not information for customers that start with M (Merchants).

newbalanceDest - new balance recipient after the transaction. Note that there is not information for customers that start with M (Merchants).

isFraud - This is the transactions made by the fraudulent agents inside the simulation. In this specific dataset the fraudulent behavior of the agents aims to profit by taking control or customers accounts and try to empty the funds by transferring to another account and then cashing out of the system.

isFlaggedFraud - The business model aims to control massive transfers from one account to another and flags illegal attempts. An illegal attempt in this dataset is an attempt to transfer more than 200.000 in a single transaction.

Past Research

There are 5 similar files that contain the run of 5 different scenarios. These files are better explained at my PhD thesis chapter 7 (PhD Thesis Available here http://urn.kb.se/resolve?urn=urn:nbn:se:bth-12932).

We ran PaySim several times using random seeds for 744 steps, representing each hour of one month of real time, which matches the original logs. Each run took around 45 minutes on an i7 intel processor with 16GB of RAM. The final result of a run contains approximately 24 million of financial records divided into the 5 types of categories: CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER.

Acknowledgements

This work is part of the research project ”Scalable resource-efficient systems for big data analytics” funded by the Knowledge Foundation (grant: 20140032) in Sweden.

Please refer to this dataset using the following citations:

PaySim first paper of the simulator:

E. A. Lopez-Rojas , A. Elmir, and S. Axelsson. "PaySim: A financial mobile money simulator for fraud detection". In: The 28th European Modeling and Simulation Symposium-EMSS, Larnaca, Cyprus. 2016

About

Detecting Frauds in Online Transactions using Anamoly Detection Techniques Such as Over Sampling and Under-Sampling as the ratio of Frauds is less than 0.00005 thus, simply applying Classification Algorithm may result in Overfitting

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published