Skip to content

Dynamically adjust cost of the rides in response to changing factors

Notifications You must be signed in to change notification settings

roissyahf/Dynamic-Pricing-Ride-Fares-App

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Dynamic Pricing App on Ride Sharing Case

Streamlit App

🔍 About the project

This Streamlit application empowers users to estimate ride costs using a dynamic pricing model. By analyzing historical data with data-driven techniques, the model can adjust prices in real-time based on various factors. Built using a CatBoost Regression model, it considers features like vehicle type, number of riders and drivers, and expected ride duration to predict adjusted fares.

This project involved several key steps:

  1. Data Wrangling: Data was obtained from statso.io and meticulously prepared for analysis.
  2. Exploratory Data Analysis: The data was thoroughly examined to understand its characteristics and identify potential patterns.
  3. Feature Engineering: Calculated adjusted fares by incorporating demand and supply multipliers.
  4. Model Building and Evaluation: The CatBoost Regression model was trained and rigorously evaluated to ensure its accuracy. Hyperparameters were also optimized for peak performance.
  5. Model Deployment: Finally, the model was deployed within the Streamlit app, making it accessible to users.

⚒️ Setup environment

conda create --name dynamic-pricing-app python=3.9
conda activate dynamic-pricing-app
pip install streamlit pickle-mixin pandas

🚀 Run streamlit app

streamlit run app.py

About

Dynamically adjust cost of the rides in response to changing factors

Topics

Resources

Stars

Watchers

Forks

Languages