Project | arXiv
Borna Bešić, Abhinav Valada
Dynamic Object Removal and Spatio-Temporal RGB-D Inpainting via Geometry-Aware Adversarial Learning
We recommend using conda package and environment management system. We provide environment.yml
that can be used to easily create a self-contained environment with all the dependencies:
conda env create -f environment.yml
conda activate DynaFill
- Linux 4.15.0-122-generic x86_64
- NVIDIA GPU Driver 390.138 + CUDA 9.0
- Python 3.6
- PyTorch 1.1.0 + torchvision 0.2.1
- OpenCV 4.0
The description of our DynaFill dataset with the corresponding download instructions can be found at inpainting.cs.uni-freiburg.de/#dataset.
usage: demo.py [-h] [--device DEVICE] dataset_split_dir
positional arguments:
dataset_split_dir Path to training/ or validation/ directory of DynaFill
dataset
optional arguments:
-h, --help show this help message and exit
--device DEVICE Device on which to run inference
python demo.py /mnt/data/DynaFill/validation --device cuda:1
If you find the code useful for your research, please consider citing our paper:
@article{bei2020dynamic,
title={Dynamic Object Removal and Spatio-Temporal RGB-D Inpainting via Geometry-Aware Adversarial Learning},
author={Borna Bešić and Abhinav Valada},
journal={arXiv preprint arXiv:2008.05058},
year={2020}
}
For academic usage, the code is released under the GPLv3 license. For any commercial purpose, please contact the authors.