Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix tie_quantizer errors with unquantizable ops #3505

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions TrainingExtensions/onnx/src/python/aimet_onnx/quantsim.py
Original file line number Diff line number Diff line change
Expand Up @@ -895,9 +895,7 @@ def _set_src_qtzr(x: Product, consumer: Op, src_qtzr):
_, out_qtzr, __ = self.get_op_quantizers(op)

if not out_qtzr:
msg = 'Encoding propagation is only supported for ops with exactly ' \
'1 output quantizer, but found output_quantizers[0] == []'
raise RuntimeError(msg)
continue

if len(out_qtzr) != 1:
msg = 'Encoding propagation is only supported for ops with exactly ' \
Expand Down
34 changes: 34 additions & 0 deletions TrainingExtensions/onnx/test/python/models/models_for_tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -2543,3 +2543,37 @@ def batchnorm_model_constants():
onnx.checker.check_model(model, True)
return model

def integer_concat_model():
model = helper.make_model(
graph=helper.make_graph(
name='IntConcatModel',
inputs=[helper.make_tensor_value_info('model_input', TensorProto.FLOAT, shape=[10, 10])],
outputs=[helper.make_tensor_value_info('model_output', TensorProto.FLOAT, shape=[10, 10, 1])],
initializer=[],
nodes=[
helper.make_node('Constant', inputs=[], outputs=["constant_one"],
value=numpy_helper.from_array(np.array([1]).astype('int64')), name='one'),
helper.make_node(
'Shape',
inputs=['model_input'],
outputs=['input_shape'],
name='shape'
),
helper.make_node(
'Concat',
inputs=['input_shape', 'constant_one'],
outputs=['output_shape'],
name='out_shape',
axis=0
),
helper.make_node(
"Reshape",
inputs=["model_input", "output_shape"],
outputs=["model_output"]
)
]
)
)
onnx.checker.check_model(model, True)
return model

9 changes: 9 additions & 0 deletions TrainingExtensions/onnx/test/python/test_quantsim.py
Original file line number Diff line number Diff line change
Expand Up @@ -1579,6 +1579,15 @@ def forward(self, x):
_, out_qtzr, __ = sim.get_op_quantizers(cg_op)
assert _compare_encodings(out_qtzr[0].encodings[0], sim.qc_quantize_op_dict['output'].encodings[0])

def test_integer_concat(self):
"""
When: Model contains unquantizable layers with op_type in quantsim.op_types_to_tie_qtzrs
Then: Error should not be thrown during quantsim init
"""
model = models_for_tests.integer_concat_model()
with _apply_constraints(True):
sim = QuantizationSimModel(model)

def test_clamp_activation_encodings(self):
model = models_for_tests.matmul_add_model()
dummy_input = {'model_input': np.expand_dims(np.identity(8, np.float32), axis=(0, 1))}
Expand Down
Loading