Skip to content

Commit

Permalink
Revert
Browse files Browse the repository at this point in the history
  • Loading branch information
mathieuboudreau committed Oct 7, 2024
1 parent c38a2cc commit 72a7b4a
Showing 1 changed file with 19 additions and 19 deletions.
38 changes: 19 additions & 19 deletions 4 B1 Mapping/01-Double Angle technique/A1-Appendix A.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,28 +24,28 @@ This content of this section is still a work-in-progress and has not been proofr
:enumerator:
\begin{equation}
\begin{split}
\text{e}^{i2\alpha} &= \text{e}^{i\left( \alpha+\alpha \right)}
&= \text{e}^{i\alpha+i\alpha}
&= \text{e}^{i\alpha}\text{e}^{i\alpha}
&= \left( \text{cos}\left( \alpha \right)+i\text{sin}\left( \alpha \right) \right)\left( \text{cos}\left( \alpha \right)+i\text{sin}\left( \alpha \right) \right)
&= \text{cos}\left( \alpha \right)\text{cos}\left( \alpha \right)+i\text{cos}\left( \alpha \right)\text{sin}\left( \alpha \right)+i\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right)+i^{2}\text{sin}\left( \alpha \right)\text{sin}\left( \alpha \right)
&= \text{cos}\left( \alpha \right)\text{cos}\left( \alpha \right)+i\text{cos}\left( \alpha \right)\text{sin}\left( \alpha \right)+i\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right)+\left( -1 \right)\text{sin}\left( \alpha \right)\text{sin}\left( \alpha \right)
&= \text{cos}\left( \alpha \right)\text{cos}\left( \alpha \right)+i\text{cos}\left( \alpha \right)\text{sin}\left( \alpha \right)+i\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right)-\text{sin}\left( \alpha \right)\text{sin}\left( \alpha \right)
&= \text{cos}^{2}\left( \alpha \right)+i\text{cos}\left( \alpha \right)\text{sin}\left( \alpha \right)+i\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)
&= \left( \text{cos}^{2}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)\right)+i\left( \text{cos}\left( \alpha \right)\text{sin}\left( \alpha \right) +\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right) \right)
&= \left( \text{cos}^{2}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)\right)+i\left( \text{sin}\left( \alpha \right) \text{cos}\left( \alpha \right)+\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right) \right)
\text{e}^{i2\alpha} &= \left( \text{cos}^{2}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)\right)+i\left( 2\text{sin}\left( \alpha \right) \text{cos}\left( \alpha \right) \right)
\text{cos}\left( 2\alpha \right)+i\text{sin}\left( 2\alpha \right) &= \left( \text{cos}^{2}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)\right)+i\left( 2\text{sin}\left( \alpha \right) \text{cos}\left( \alpha \right) \right)
\text{e}^{i2\alpha} &= \text{e}^{i\left( \alpha+\alpha \right)} \\
&= \text{e}^{i\alpha+i\alpha} \\
&= \text{e}^{i\alpha}\text{e}^{i\alpha} \\
&= \left( \text{cos}\left( \alpha \right)+i\text{sin}\left( \alpha \right) \right)\left( \text{cos}\left( \alpha \right)+i\text{sin}\left( \alpha \right) \right) \\
&= \text{cos}\left( \alpha \right)\text{cos}\left( \alpha \right)+i\text{cos}\left( \alpha \right)\text{sin}\left( \alpha \right)+i\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right)+i^{2}\text{sin}\left( \alpha \right)\text{sin}\left( \alpha \right)\\
&= \text{cos}\left( \alpha \right)\text{cos}\left( \alpha \right)+i\text{cos}\left( \alpha \right)\text{sin}\left( \alpha \right)+i\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right)+\left( -1 \right)\text{sin}\left( \alpha \right)\text{sin}\left( \alpha \right)\\
&= \text{cos}\left( \alpha \right)\text{cos}\left( \alpha \right)+i\text{cos}\left( \alpha \right)\text{sin}\left( \alpha \right)+i\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right)-\text{sin}\left( \alpha \right)\text{sin}\left( \alpha \right)\\
&= \text{cos}^{2}\left( \alpha \right)+i\text{cos}\left( \alpha \right)\text{sin}\left( \alpha \right)+i\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)\\
&= \left( \text{cos}^{2}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)\right)+i\left( \text{cos}\left( \alpha \right)\text{sin}\left( \alpha \right) +\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right) \right)\\
&= \left( \text{cos}^{2}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)\right)+i\left( \text{sin}\left( \alpha \right) \text{cos}\left( \alpha \right)+\text{sin}\left( \alpha \right)\text{cos}\left( \alpha \right) \right)\\
\text{e}^{i2\alpha} &= \left( \text{cos}^{2}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)\right)+i\left( 2\text{sin}\left( \alpha \right) \text{cos}\left( \alpha \right) \right)\\
\text{cos}\left( 2\alpha \right)+i\text{sin}\left( 2\alpha \right) &= \left( \text{cos}^{2}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)\right)+i\left( 2\text{sin}\left( \alpha \right) \text{cos}\left( \alpha \right) \right)\\
\end{split} \\ \\
\text{For }z \in \mathbb{C} \text{ and }q \in \mathbb{C}\text{,}
\text{if }z=q
\text{then }\text{Re}\left( z \right)=\text{Re}\left( q \right)
\text{ and }\text{Im}\left( z \right)=\text{Im}\left( q \right)
\text{For }z \in \mathbb{C} \text{ and }q \in \mathbb{C}\text{,}\\
\text{if }z=q \\
\text{then }\text{Re}\left( z \right)=\text{Re}\left( q \right) \\
\text{ and }\text{Im}\left( z \right)=\text{Im}\left( q \right) \\
\text{thus,} \\ \\
\begin{split}
\text{Im}\left( \text{cos}\left( 2\alpha \right)+i\text{sin}\left( 2\alpha \right) \right) &= \text{Im}\left( \left( \text{cos}^{2}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)\right)+i\left( 2\text{sin}\left( \alpha \right) \text{cos}\left( \alpha \right) \right) \right)
\text{sin}\left( 2\alpha \right) &= 2\text{sin}\left( \alpha \right) \text{cos}\left( \alpha \right)
\end{split}
\text{Im}\left( \text{cos}\left( 2\alpha \right)+i\text{sin}\left( 2\alpha \right) \right) &= \text{Im}\left( \left( \text{cos}^{2}\left( \alpha \right)-\text{sin}^{2}\left( \alpha \right)\right)+i\left( 2\text{sin}\left( \alpha \right) \text{cos}\left( \alpha \right) \right) \right)\\
\text{sin}\left( 2\alpha \right) &= 2\text{sin}\left( \alpha \right) \text{cos}\left( \alpha \right) \\
\end{split}\\
Q.E.D.
\end{equation}
```
Expand Down

0 comments on commit 72a7b4a

Please sign in to comment.