Skip to content

Commit

Permalink
[Flow] Always permute the accesses on inputs for elementwise consumer…
Browse files Browse the repository at this point in the history
… from namedop/reduction producer. (iree-org#17663)

For dispatch formation, the current logic (and a lot of code-generation)
works much better if the consumer uses an identity indexing map for the
producer. There is already a pass in dispatch region formation flow that
does this for just a convolution op. Make this apply for more general
cases.

Signed-off-by: MaheshRavishankar <mahesh.ravishankar@gmail.com>
  • Loading branch information
MaheshRavishankar authored Jun 27, 2024
1 parent 695e193 commit 4294a5b
Show file tree
Hide file tree
Showing 2 changed files with 35 additions and 3 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -39,8 +39,11 @@ struct TransposeGenericOpPattern : public OpRewritePattern<linalg::GenericOp> {
std::optional<AffineMap> mapForInterchange;

for (auto operand : genericOp.getDpsInputOperands()) {
auto producer = operand->get().getDefiningOp<linalg::Conv2DNhwcHwcfOp>();
if (!producer || !llvm::hasSingleElement(producer->getUsers()))
// Check that the producer is a named op or a reduction op (i.e. not
// elementwise op) with a single use.
auto producer = operand->get().getDefiningOp<linalg::LinalgOp>();
if (!producer || !llvm::hasSingleElement(producer->getUsers()) ||
linalg::isElementwise(producer))
continue;

// check if the generic op has a non-identity map for the operand.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,38 @@ util.func @supported_conv(%arg0 : tensor<2x130x130x16xf16>, %arg1 : tensor<3x3x1
} -> tensor<2x320x128x128xf16>
util.return %truncf : tensor<2x320x128x128xf16>
}
// CHECK-LABEL: func public @supported_conv
// CHECK-LABEL: func public @supported_conv(
// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf
// CHECK: %[[GENERIC:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d3, d1, d2)>]
// CHECK-SAME: ins(%[[CONV]] :
// CHECK: return %[[GENERIC]]

// -----

util.func @generalize_to_any_linalg_op(%arg0 : tensor<?x?x?x?xi8>, %arg1 : tensor<?x?x?x?xi8>,
%arg2 : tensor<?x?x?x?xi64>, %arg3 : tensor<?x?x?x?xi64>, %arg4 : tensor<?x?x?x?xi8>) -> tensor<?x?x?x?xi8> {
%c0_i64 = arith.constant 0 : i64
%0 = linalg.conv_2d_nhwc_hwcf_q {
dilations = dense<1> : vector<2xi64>, strides = dense<1> : vector<2xi64>}
ins(%arg0, %arg1, %c0_i64, %c0_i64 : tensor<?x?x?x?xi8>, tensor<?x?x?x?xi8>, i64, i64)
outs(%arg2 : tensor<?x?x?x?xi64>) -> tensor<?x?x?x?xi64>
%2 = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d1, d2, d3, d0)>,
affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
ins(%0 : tensor<?x?x?x?xi64>) outs(%arg4 : tensor<?x?x?x?xi8>) {
^bb0(%in: i64, %out: i8):
%3 = arith.trunci %in : i64 to i32
%4 = arith.sitofp %3 : i32 to f32
%5 = arith.fptosi %4 : f32 to i8
linalg.yield %5 : i8
} -> tensor<?x?x?x?xi8>
util.return %2 : tensor<?x?x?x?xi8>
}
// CHECK-LABEL: func public @generalize_to_any_linalg_op(
// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf_q
// CHECK: %[[RESULT:.+]] = linalg.generic
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>,
// CHECK-SAME: affine_map<(d0, d1, d2, d3) -> (d3, d0, d1, d2)>]
// CHECK: return %[[RESULT]]

0 comments on commit 4294a5b

Please sign in to comment.