Skip to content

This repository contains all the code necessary for running the multilingual distilwhisper from Ferraz et al. 2024 IEEE ICASSP paper.

Notifications You must be signed in to change notification settings

naver/multilingual-distilwhisper

Repository files navigation

Multilingual DistilWhisper: Efficient Distillation of Multi-task Speech Models via Language-Specific Experts

Multilingual Distilwhisper allows for better ASR performance in target languages by adding lightweight CLSR modules on top of whisper-small.

The pre-trained weights for the paper experiments are available here.

Requirements

For training DistilWhisper, please install the requirements listed in full_requirements.yaml

For training the LoRA baseline, please install the requirements listed in lora_requirements.yaml

How to run training

Scripts are available at DistilWhisper/train/

  • LoRA baseline: DistilWhisper/train/train_lora.sh
  • Model using only CLSR trained on ASR loss (no distillation): DistilWhisper/train/train_clsr.sh
  • Distillation model with JS loss (DistilWhisper): DistilWhisper/train/train_js_distill.sh
  • Distillation model with KL loss (From the appendix available on arxiv): DistilWhisper/train/train_kl_distill.sh

How to run evaluation

Scripts are available at DistilWhisper/train/

  • LoRA baseline: DistilWhisper/train/eval_lora.sh
  • Model using only CLSR trained on ASR loss (no distillation): DistilWhisper/train/eval_clsr.sh
  • Distillation model with JS loss (DistilWhisper): DistilWhisper/train/eval_js_distill.sh
  • Distillation model with KL loss (From the appendix): DistilWhisper/train/eval_kl_distill.sh

Interative inference example

Check example at model/inference_example.py

from transformers import WhisperProcessor
from DistilWhisper import DistilWhisperForConditionalGeneration
from datasets import Audio, load_dataset

# 1. load model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = DistilWhisperForConditionalGeneration.from_pretrained("naver/multilingual-distilwhisper-28k")

# 2. load language experts 
language="calatan"
model.load_experts(language)
model.set_language_task(language=language, task="transcribe")
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="transcribe")

# 3. load streaming dataset and read first audio sample
ds = load_dataset("google/fleurs", "ca_es", split="test")
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
input_speech = next(iter(ds))["audio"]
input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features

# 4. generate token ids and decode it into text
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(transcription)
# ["Els esports més coneguts són el futbol, el bàsquet, el voleibol, el waterpolo, l'esgrima, el rucbi, el ciclisme, hoquei sobre gel, hoquei sobre patins i l'automobilisme de Fórmula U."]

Citation

@inproceedings{ferraz2024distilwhisper,
  title={Multilingual DistilWhisper: Efficient Distillation of Multi-task Speech Models via Language-Specific Experts},
  author={Ferraz, Thomas Palmeira and Boito, Marcely Zanon and Brun, Caroline and Nikoulina, Vassilina},
  booktitle={ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  year={2024},
  organization={IEEE}
}

About

This repository contains all the code necessary for running the multilingual distilwhisper from Ferraz et al. 2024 IEEE ICASSP paper.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published