Skip to content

nanmi/trt_template

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TensorRT Infer Template

This project base on tiny-tensorrt

News

It can speed up the whole pipeline on GPU, greatly improve the operation efficiency, and customize the pre-processing and post-processing on GPU - 2021-7-12

Features

  • Preprocess in GPU
  • Postprocess in GPU
  • run whole pipeline in GPU easily
  • Custom onnx model output node
  • Engine serialization and deserialization auto
  • INT8 support

System Requirements

cuda 10.0+

TensorRT 7

OpenCV 4.0+ (build with opencv-contrib module)

Installation

Make sure you had install dependencies list above

# clone project and submodule
git clone {this repo}

cd {this repo}

mkdir build && cd build && cmake .. && make

use to infer tensorrt engine.

Params

enum class BuilderFlag : int
{
    kFP16 = 0,         //!< Enable FP16 layer selection.
    kINT8 = 1,         //!< Enable Int8 layer selection.
    kDEBUG = 2,        //!< Enable debugging of layers via synchronizing after every layer.
    kGPU_FALLBACK = 3, //!< Enable layers marked to execute on GPU if layer cannot execute on DLA.
    kSTRICT_TYPES = 4, //!< Enables strict type constraints.
    kREFIT = 5,        //!< Enable building a refittable engine.
};
--onnx 指定onnx模型
--custom_outputs 指定模型的输出,用","隔开
--mode build engine时的数据类型,0:fp32;1:fp16;2:int8,默认值0
--engine
--batch_size 默认值1
--calibrate_data  int8模型下,指定校准数据集
--calibrate_cache int8模式下,校准表
--gpu GPU索引,默认值0
--dla 默认值-1
#示例
./infer_demo --onnx nanodet_m_sim.onnx --custom_outputs cls_8,cls_16,cls_32,dis_8,dis_pred_16,dis_32 --mode 1 --engine nanodet_m_sim_fp16.engine

Docs

example cxx code for how to use opencv gpu version in TensorRT inference.

About License

For the 3rd-party module and TensorRT, you need to follow their license

For the part I wrote, you can do anything you want

About

a template about trt infer easily.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published