Skip to content

Commit

Permalink
Dataset object (#296)
Browse files Browse the repository at this point in the history
* Dataset object, heavily inspired by the RFC in #219

* update top-level docs, adapt two loaders

* update dataset api

* update all loaders to fit new API

* remove outdated test

* update tests, inherit dataset-specific load functions, docstring hack, better error handling

* remove data_home from Track docstrings

* normalize dataset_dir to match module name, removes need for DATASET_DIR

* update test_full dataset; fix introduced bug in orchset

* fix bug in orchset download method  #309 

* consolodate track.py and dataset.py into core.py

* create datasets submodule

* fix import bug in tests

* hack around git case sensitiveness

* hack back around git case sensitiveness

* hack around git ignore case changes

* hack back around git ignoring case changes

* fix capitalization in tests paths

* port beatport key to 0.3

Co-authored-by: Rachel Bittner <rachelbittner@spotify.com>
  • Loading branch information
rabitt and Rachel Bittner authored Nov 3, 2020
1 parent 8de5f6a commit 753ef90
Show file tree
Hide file tree
Showing 172 changed files with 4,411 additions and 6,163 deletions.
152 changes: 45 additions & 107 deletions CONTRIBUTING.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,12 +22,13 @@ Finally, run tox with `tox`. All tests should pass!
To add a new dataset loader you should:

1. Create a script in `scripts/`, e.g. `make_my_dataset_index.py`, which generates an index file. (See below for what an index file is)
2. Run the script on the canonical version of the dataset and save the index in `mirdata/indexes/` e.g. `my_dataset_index.json`. (Also see below for what we mean by "canonical")
3. Create a module in mirdata, e.g. `mirdata/my_dataset.py`
2. Run the script on the canonical version of the dataset and save the index in `mirdata/datasets/indexes/` e.g. `my_dataset_index.json`. (Also see below for what we mean by "canonical")
3. Create a module in mirdata, e.g. `mirdata/datasets/my_dataset.py`
4. Create tests for your loader in `tests/`, e.g. `test_my_dataset.py`
5. Add your module to `docs/source/mirdata.rst` and `docs/source/datasets.rst`
6. Add the module to `mirdata/__init__.py`
5. Add your module to `docs/source/mirdata.rst` and `docs/source/datasets.rst` (you can check that this was done correctly by clicking on the readthedocs check when you open a Pull Request)
6. Add the module name to `DATASETS` in `mirdata/__init__.py`
7. Add the module to the list in the `README.md` file, section `Currently supported datasets`
8. Run `pytest -s tests/test_full_dataset.py --local --dataset my_dataset` and make sure the tests all pass. See the tests section below for details.

If your dataset **is not fully downloadable** there are two extra steps you should follow:
1. Contacting the mirdata organizers by opening an issue or PR so we can discuss how to proceed with the closed dataset.
Expand Down Expand Up @@ -138,10 +139,18 @@ import os

from mirdata import download_utils
from mirdata import jams_utils
from mirdata import track
from mirdata import core
from mirdata import utils

DATASET_DIR = 'Example'

# -- Add any relevant citations here
BIBTEX = """@article{article-minimal,
author = "L[eslie] B. Lamport",
title = "The Gnats and Gnus Document Preparation System",
journal = "G-Animal's Journal",
year = "1986"
}"""

# -- REMOTES is a dictionary containing all files that need to be downloaded.
# -- The keys should be descriptive (e.g. 'annotations', 'audio')
REMOTES = {
Expand All @@ -153,6 +162,14 @@ REMOTES = {
),
}

# -- Include any information that should be printed when downloading
# -- remove this variable if you don't need to print anything during download
DOWNLOAD_INFO = """
Include any information you want to be printed when dataset.download() is called.
These can be instructions for how to download the dataset (e.g. request access on zenodo),
caveats about the download, etc
"""

# -- change this to load any top-level metadata
## delete this function if you don't have global metadata
def _load_metadata(data_home):
Expand All @@ -175,32 +192,27 @@ DATA = utils.LargeData('example_index.json', _load_metadata)
# DATA = utils.LargeData('example_index.json') ## use this if your dataset has no metadata


class Track(track.Track):
class Track(core.Track):
"""Example track class
# -- YOU CAN AUTOMATICALLY GENERATE THIS DOCSTRING BY CALLING THE SCRIPT:
# -- `scripts/print_track_docstring.py my_dataset`
# -- note that you'll first need to have a test track (see "Adding tests to your dataset" below)
Args:
track_id (str): track id of the track
data_home (str): Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets/Example`
Attributes:
track_id (str): track id
# -- Add any of the dataset specific attributes here
"""
def __init__(self, track_id, data_home=None):
def __init__(self, track_id, data_home):
if track_id not in DATA.index:
raise ValueError(
'{} is not a valid track ID in Example'.format(track_id))

self.track_id = track_id

if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)

self._data_home = data_home
self._track_paths = DATA.index[track_id]

Expand Down Expand Up @@ -319,97 +331,34 @@ def load_audio(audio_path):
raise IOError("audio_path {} does not exist".format(audio_path))
return librosa.load(audio_path, sr=None, mono=True)

# -- the partial_download argument can be removed if `dataset.REMOTES` is missing/has only one value
# -- the force_overwrite argument can be removed if the dataset does not download anything
# -- (i.e. there is no `dataset.REMOTES`)
# -- the cleanup argument can be removed if the dataset has no tar or zip files in `dataset.REMOTES`.
def download(
data_home=None, partial_download=None, force_overwrite=False, cleanup=True
# -- this function is not necessary unless you need very custom download logic
# -- If you need it, it must have this signature.
def _download(
save_dir, remotes, partial_download, info_message, force_overwrite, cleanup
):
"""Download the dataset.
Args:
data_home (str):
Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets`
save_dir (str):
The directory to download the data
remotes (dict or None):
A dictionary of RemoteFileMetadata tuples of data in zip format.
If None, there is no data to download
partial_download (list or None):
A list of keys to partially download the remote objects of the download dict.
If None, all data is downloaded
info_message (str or None):
A string of info to print when this function is called.
If None, no string is printed.
force_overwrite (bool):
Whether to overwrite the existing downloaded data
partial_download (list):
List indicating what to partially download. The list can include any of:
* 'TODO_KEYS_OF_REMOTES' TODO ADD DESCRIPTION
If `None`, all data is downloaded.
If True, existing files are overwritten by the downloaded files.
cleanup (bool):
Whether to delete the zip/tar file after extracting.
"""
if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)

download_utils.downloader(
# -- everything will be downloaded & uncompressed inside `data_home`
data_home,
# -- by default all elements in REMOTES will be downloaded
remotes=REMOTES,
# -- we allow partial downloads of the datasets containing multiple remote files
# -- this is done by specifying a list of keys in partial_download (when using the library)
partial_download=partial_download,
# -- if you need to give the user any instructions, such as how to download
# -- a dataset which is not freely availalbe, put them here
info_message=None,
force_overwrite=force_overwrite,
cleanup=cleanup,
)


# -- keep this function exactly as it is
def validate(data_home=None, silence=False):
"""Validate if the stored dataset is a valid version
Args:
data_home (str): Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets`
Returns:
missing_files (list): List of file paths that are in the dataset index
but missing locally
invalid_checksums (list): List of file paths that file exists in the dataset
index but has a different checksum compare to the reference checksum
"""
if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)

missing_files, invalid_checksums = utils.validator(
DATA.index, data_home, silence=silence
)
return missing_files, invalid_checksums


# -- keep this function exactly as it is
def track_ids():
"""Return track ids
Returns:
(list): A list of track ids
"""
return list(DATA.index.keys())


# -- keep this function as it is
def load(data_home=None):
"""Load Example dataset
Args:
data_home (str): Local path where the dataset is stored.
If `None`, looks for the data in the default directory, `~/mir_datasets`
Returns:
(dict): {`track_id`: track data}
"""
if data_home is None:
data_home = utils.get_default_dataset_path(DATASET_DIR)

data = {}
for key in DATA.index.keys():
data[key] = Track(key, data_home=data_home)
return data
# see download_utils.downloader for basic usage - if you only need to call downloader
# once, you do not need this function at all.
# only write a custom function if you need it!


# -- Write any necessary loader functions for loading the dataset's data
Expand Down Expand Up @@ -438,18 +387,6 @@ def load_annotation(annotation_path):
np.array(annotation))
return annotation_data


def cite():
"""Print the reference"""

cite_data = """
=========== MLA ===========
MLA format citation/s here
========== Bibtex ==========
Bibtex format citations/s here
"""
print(cite_data)

```


Expand All @@ -461,6 +398,7 @@ Bibtex format citations/s here
c. If the dataset has a metadata file, reduce the length to a few lines to make it trival to test.
2. Test all of the dataset specific code, e.g. the public attributes of the Track object, the load functions and any other custom functions you wrote. See the ikala dataset tests (`tests/test_ikala.py`) for a reference.
*Note that we have written automated tests for all loader's `cite`, `download`, `validate`, `load`, `track_ids` functions, as well as some basic edge cases of the `Track` object, so you don't need to write tests for these!*
3. Locally run `pytest -s tests/test_full_dataset.py --local --dataset my_dataset`. See below for more details.

## Running your tests locally

Expand Down
50 changes: 32 additions & 18 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,14 +24,14 @@ pip install mirdata

Try it out!
```python
import mirdata.orchset
import mirdata
import random

mirdata.orchset.download() # download the dataset
mirdata.orchset.validate() # validate that all the expected files are there
orchset_data = mirdata.orchset.load() # (lazy) load the data index
orchset = mirdata.Dataset('orchset')
orchset.download() # download the dataset
orchset.validate() # validate that all the expected files are there

example_track = random.choice(list(orchset_data.items())) # choose a random example track
example_track = orchset.choice_track() # choose a random example track
print(example_track) # see the availalbe data
```
See the Examples section below for more details, or the [documentation](https://mirdata.readthedocs.io/en/latest/) for more examples and the API reference.
Expand Down Expand Up @@ -92,31 +92,44 @@ We welcome contributions to this library, especially new datasets. Please see [C

### Download the Orchset Dataset
```python
import mirdata.orchset
import mirdata

mirdata.orchset.download()
orchset = mirdata.Dataset('orchset')
orchset.download()
```

### Validate the data
```python
import mirdata.orchset
import mirdata

mirdata.orchset.validate()
orchset = mirdata.Dataset('orchset')
orchset.validate()
```

### Load the Orchset Dataset
### Load data for a specific track
```python
import mirdata.orchset
import mirdata

orchset_data = mirdata.orchset.load()
orchset = mirdata.Dataset('orchset')
track = orchset.track('Beethoven-S3-I-ex1')
print(track)
```

### Load all tracks in the Orchset Dataset
```python
import mirdata

orchset = mirdata.Dataset('orchset')
orchset_data = orchset.load_tracks()
```

### See what data are available for a track
```python
import mirdata.orchset
import mirdata

orchset_ids = mirdata.orchset.track_ids()
orchset_data = mirdata.orchset.load()
orchset = mirdata.Dataset('orchset')
orchset_ids = orchset.track_ids()
orchset_data = orchset.load_tracks()

example_track = orchset_data[orchset_ids[0]]
print(example_track)
Expand Down Expand Up @@ -144,7 +157,7 @@ print(example_track)
### Evaluate a melody extraction algorithm on Orchset
```python
import mir_eval
import mirdata.orchset
import mirdata
import numpy as np
import sox

Expand All @@ -156,7 +169,8 @@ def very_bad_melody_extractor(audio_path):

# Evaluate on the full dataset
orchset_scores = {}
orchset_data = mirdata.orchset.load()
orchset = mirdata.Dataset('orchset')
orchset_data = orchset.load_tracks()
for track_id, track_data in orchset_data.items():
est_times, est_freqs = very_bad_melody_extractor(track_data.audio_path_mono)

Expand All @@ -183,4 +197,4 @@ for track_id, track_data in orchset_data.items():
By default, all datasets tracked by this library are stored in `~/mir_datasets`,
(defined as `MIR_DATASETS_DIR` in `mirdata/__init__.py`).
Data can alternatively be stored in another location by specifying `data_home`
within a relevant function, e.g. `mirdata.orchset.download(data_home='my_custom_path')`
within a relevant function, e.g. `mirdata.Dataset('orchset', data_home='my_custom_path')`
Loading

0 comments on commit 753ef90

Please sign in to comment.