Skip to content

Julia package implementing BFGS in various forms

License

Notifications You must be signed in to change notification settings

matthewozon/NMOpt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NMOpt CI Documentation

NMOpt

BFGS is an simple implementation of the Newton' methods in Julia. The main objectives of those methods is to solve convex optimization problem, possibly with constraints and/or limited memory.

Examples

Let $x$ and $y$ in $\mathbb{R}$. We wish to find the optimal pair $(\hat{x},\hat{y})$ solution of the problem

$$\underset{x,y}{\arg\min} \left\{e^{x-1} + e^{1-y} + (x-y)^2 + 2\sin(π(x+y))\right\}$$

possibly under the constraints $-\frac{1}{2} \leqslant x$ and $y\leqslant\frac{4}{5}$. This optimization problem is not convex, however, it is locally convex: the optimal solution depends on the initial point of the algorithm.

The gradient is given by

$$\begin{bmatrix}\frac{\partial F}{\partial x}\\\frac{\partial F}{\partial y}\end{bmatrix} = \begin{bmatrix} e^{x-1} + 2(x-y) + 2\pi\cos(\pi(x+y)) \\ -e^{1-y} - 2(x-y) + 2\pi\cos(\pi(x+y)) \end{bmatrix}$$

Loading the package

using NMOpt

Problem to optimize

function F(x::Array{Cdouble,1})
    exp(x[1]-1.0) + exp(-x[2]+1.0) + (x[1]-x[2])^2 + 2.0*sin(pi*sum(x))
end

function Fgrad(x::Array{Cdouble,1})
    y = Array{Cdouble,1}(undef,length(x))
    y[1] =  exp(x[1]-1.0)  + 2.0(x[1]-x[2]) + 2.0*pi*cos(pi*sum(x))
    y[2] = -exp(-x[2]+1.0) - 2.0(x[1]-x[2]) + 2.0pi*cos(pi*sum(x))
    y_
end

Initial conditions

X0 = zeros(Cdouble,2)
X0[1] = 2.0 
X0[2] = -0.5
p0 = ones(Cdouble,2)          # first descent direction
alpha_min = -4.0              # smallest value of the length of the step
alpha_max = 4.0               # largest value of the length of the step 
mu = 0.4                      # <0.5 parameter for the line search algorithm
Nbfgs = 100                   # maximum number of iterations for BFGS main loop
Nsearch = 10                  # maximum number of iteration for the line search
Mmemory = 4                   # size of the memory
H0 = 0.01*[1.0 0.0; 0.0 1.0]  # initial Hessian matrix 

BFGS

Xend,Hend,Xpath,Nlast = BFGS(X0,H0,Nbfgs,alpha_min,alpha_max,mu,F,Fgrad,Nsearch)

L-BFGS

Xend,Xpath,Nlast = LBFGS(X0,H0,Nbfgs,alpha_min,alpha_max,mu,Mmemory,F,Fgrad,Nsearch)

BFGS-B

Xend,Hend,Xpath,Nlast = BFGSB(X0,H0,2Nbfgs,alpha_min,alpha_max,mu,lx,ux,F,Fgrad,Nsearch)

L-BFGS-B

Xend,Xpath,Nlast = LBFGSB(X0+[-0.5;0.0],H0,2Nbfgs,alpha_min,alpha_max,mu,Mmemory,lx,ux,F,Fgrad,Nsearch)

Results

The example is implemented in test.jl, and the results are shown in the following figure. The BFGS and L-BFGS results are shown in panel (a), and those of BFGS-B and L-BFGS-B in panel (b). The paths of the algorithm optimal solutions are depicted with scatter dots, and the constraints with straight lines.

example_optim_path

Install

] add https://github.com/matthewozon/NMOpt

Related references

  • More and Sorensen 1982 (Newton's method technical report): BFGS
  • More 1994 (Line Search Algorithms Sufficient Decrease): line search
  • Nocedal 1980 (Updating Quasi-Newton Matrices With Limited Storage): limited memory BFGS
  • Thiébaut (Optimization issues in blind deconvolution algorithms): bounded limited memory BFGS, a.k.a vmlmb