This paper has been accepted by: The 8th Simulation and Synthesis in Medical Imaging (SASHIMI) workshop, MICCAI 2023.
-dataset
- training_path
- id_1.npy
- id_2.npy
...
- test_path
- id_1.npy
- id_2.npy
...
You can use ./data/split.py
to get meta imformation of your dataset.
data
- train.txt
- val.txt
- test.txt
Pretrain Unet:
python train_UNet.py --config './Yaml/UNet.yaml'
Start visdom:
python -m visdom.server -p 6019
Train:
python train.py --config './Yaml/mrgan.yaml'
Test:
python train.py --config './Yaml/mrgan.yaml'