Skip to content

Commit

Permalink
feat: attach and filter lemmas (#1470)
Browse files Browse the repository at this point in the history
  • Loading branch information
YaelDillies committed Nov 8, 2023
1 parent 0821e8f commit 92d78f8
Show file tree
Hide file tree
Showing 11 changed files with 142 additions and 31 deletions.
24 changes: 19 additions & 5 deletions Mathlib/Algebra/BigOperators/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ import Mathlib.Data.Fintype.Basic
import Mathlib.Data.Multiset.Powerset
import Mathlib.Data.Set.Pairwise.Basic

#align_import algebra.big_operators.basic from "leanprover-community/mathlib"@"fa2309577c7009ea243cffdf990cd6c84f0ad497"
#align_import algebra.big_operators.basic from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

/-!
# Big operators
Expand Down Expand Up @@ -187,6 +187,12 @@ theorem prod_eq_multiset_prod [CommMonoid β] (s : Finset α) (f : α → β) :
#align finset.prod_eq_multiset_prod Finset.prod_eq_multiset_prod
#align finset.sum_eq_multiset_sum Finset.sum_eq_multiset_sum

@[to_additive (attr := simp)]
lemma prod_map_val [CommMonoid β] (s : Finset α) (f : α → β) : (s.1.map f).prod = ∏ a in s, f a :=
rfl
#align finset.prod_map_val Finset.prod_map_val
#align finset.sum_map_val Finset.sum_map_val

@[to_additive]
theorem prod_eq_fold [CommMonoid β] (s : Finset α) (f : α → β) :
∏ x in s, f x = s.fold ((· * ·) : β → β → β) 1 f :=
Expand Down Expand Up @@ -1775,11 +1781,19 @@ theorem sum_const_nat {m : ℕ} {f : α → ℕ} (h₁ : ∀ x ∈ s, f x = m) :
apply sum_congr rfl h₁
#align finset.sum_const_nat Finset.sum_const_nat

lemma natCast_card_filter [AddCommMonoidWithOne β] (p) [DecidablePred p] (s : Finset α) :
((filter p s).card : β) = ∑ a in s, if p a then (1 : β) else 0 := by
rw [sum_ite, sum_const_zero, add_zero, sum_const, nsmul_one]
#align finset.nat_cast_card_filter Finset.natCast_card_filter

lemma card_filter (p) [DecidablePred p] (s : Finset α) :
(filter p s).card = ∑ a in s, ite (p a) 1 0 := natCast_card_filter _ _
#align finset.card_filter Finset.card_filter

@[simp]
theorem sum_boole {s : Finset α} {p : α → Prop} [NonAssocSemiring β] {hp : DecidablePred p} :
(∑ x in s, if p x then (1 : β) else (0 : β)) = (s.filter p).card := by
simp only [add_zero, mul_one, Finset.sum_const, nsmul_eq_mul, eq_self_iff_true,
Finset.sum_const_zero, Finset.sum_ite, mul_zero]
lemma sum_boole {s : Finset α} {p : α → Prop} [AddCommMonoidWithOne β] [DecidablePred p] :
(∑ x in s, if p x then 1 else 0 : β) = (s.filter p).card :=
(natCast_card_filter _ _).symm
#align finset.sum_boole Finset.sum_boole

theorem _root_.Commute.sum_right [NonUnitalNonAssocSemiring β] (s : Finset α) (f : α → β) (b : β)
Expand Down
3 changes: 1 addition & 2 deletions Mathlib/Algebra/BigOperators/Order.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Fintype.Card
import Mathlib.Tactic.GCongr.Core

#align_import algebra.big_operators.order from "leanprover-community/mathlib"@"824f9ae93a4f5174d2ea948e2d75843dd83447bb"
#align_import algebra.big_operators.order from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

/-!
# Results about big operators with values in an ordered algebraic structure.
Expand Down Expand Up @@ -223,7 +223,6 @@ theorem prod_le_pow_card (s : Finset ι) (f : ι → N) (n : N) (h : ∀ x ∈ s
refine' (Multiset.prod_le_pow_card (s.val.map f) n _).trans _
· simpa using h
· simp
rfl
#align finset.prod_le_pow_card Finset.prod_le_pow_card
#align finset.sum_le_card_nsmul Finset.sum_le_card_nsmul

Expand Down
5 changes: 4 additions & 1 deletion Mathlib/Data/Finset/Card.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ Authors: Leonardo de Moura, Jeremy Avigad
import Mathlib.Init.CCLemmas
import Mathlib.Data.Finset.Image

#align_import data.finset.card from "leanprover-community/mathlib"@"9003f28797c0664a49e4179487267c494477d853"
#align_import data.finset.card from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

/-!
# Cardinality of a finite set
Expand Down Expand Up @@ -48,6 +48,9 @@ theorem card_def (s : Finset α) : s.card = Multiset.card s.1 :=
rfl
#align finset.card_def Finset.card_def

@[simp] lemma card_val (s : Finset α) : Multiset.card s.1 = s.card := rfl
#align finset.card_val Finset.card_val

@[simp]
theorem card_mk {m nodup} : (⟨m, nodup⟩ : Finset α).card = Multiset.card m :=
rfl
Expand Down
21 changes: 20 additions & 1 deletion Mathlib/Data/Finset/Image.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ import Mathlib.Data.Fin.Basic
import Mathlib.Data.Finset.Basic
import Mathlib.Data.Int.Order.Basic

#align_import data.finset.image from "leanprover-community/mathlib"@"b685f506164f8d17a6404048bc4d696739c5d976"
#align_import data.finset.image from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

/-! # Image and map operations on finite sets
Expand Down Expand Up @@ -187,6 +187,25 @@ theorem filter_map {p : β → Prop} [DecidablePred p] :
eq_of_veq (map_filter _ _ _)
#align finset.filter_map Finset.filter_map

lemma map_filter' (p : α → Prop) [DecidablePred p] (f : α ↪ β) (s : Finset α)
[DecidablePred (∃ a, p a ∧ f a = ·)] :
(s.filter p).map f = (s.map f).filter fun b => ∃ a, p a ∧ f a = b := by
simp [(· ∘ ·), filter_map, f.injective.eq_iff]
#align finset.map_filter' Finset.map_filter'

lemma filter_attach' [DecidableEq α] (s : Finset α) (p : s → Prop) [DecidablePred p] :
s.attach.filter p =
(s.filter fun x => ∃ h, p ⟨x, h⟩).attach.map
⟨Subtype.map id <| filter_subset _ _, Subtype.map_injective _ injective_id⟩ :=
eq_of_veq <| Multiset.filter_attach' _ _
#align finset.filter_attach' Finset.filter_attach'

lemma filter_attach (p : α → Prop) [DecidablePred p] (s : Finset α) :
s.attach.filter (fun a : s ↦ p a) =
(s.filter p).attach.map ((Embedding.refl _).subtypeMap mem_of_mem_filter) :=
eq_of_veq <| Multiset.filter_attach _ _
#align finset.filter_attach Finset.filter_attach

theorem map_filter {f : α ≃ β} {p : α → Prop} [DecidablePred p] :
(s.filter p).map f.toEmbedding = (s.map f.toEmbedding).filter (p ∘ f.symm) := by
simp only [filter_map, Function.comp, Equiv.toEmbedding_apply, Equiv.symm_apply_apply]
Expand Down
32 changes: 31 additions & 1 deletion Mathlib/Data/List/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ import Mathlib.Init.Core
import Std.Data.List.Lemmas
import Mathlib.Tactic.Common

#align_import data.list.basic from "leanprover-community/mathlib"@"9da1b3534b65d9661eb8f42443598a92bbb49211"
#align_import data.list.basic from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

/-!
# Basic properties of lists
Expand Down Expand Up @@ -2989,6 +2989,9 @@ end ModifyLast
#align list.pmap List.pmap
#align list.attach List.attach

@[simp] lemma attach_nil : ([] : List α).attach = [] := rfl
#align list.attach_nil List.attach_nil

theorem sizeOf_lt_sizeOf_of_mem [SizeOf α] {x : α} {l : List α} (hx : x ∈ l) :
SizeOf.sizeOf x < SizeOf.sizeOf l := by
induction' l with h t ih <;> cases hx <;> rw [cons.sizeOf_spec]
Expand Down Expand Up @@ -3480,8 +3483,35 @@ theorem monotone_filter_right (l : List α) ⦃p q : α → Bool⦄

#align list.map_filter List.map_filter

lemma map_filter' {f : α → β} (hf : Injective f) (l : List α)
[DecidablePred fun b => ∃ a, p a ∧ f a = b] :
(l.filter p).map f = (l.map f).filter fun b => ∃ a, p a ∧ f a = b := by
simp [(· ∘ ·), map_filter, hf.eq_iff]
#align list.map_filter' List.map_filter'

lemma filter_attach' (l : List α) (p : {a // a ∈ l} → Bool) [DecidableEq α] :
l.attach.filter p =
(l.filter fun x => ∃ h, p ⟨x, h⟩).attach.map (Subtype.map id fun x => mem_of_mem_filter) := by
classical
refine' map_injective_iff.2 Subtype.coe_injective _
simp [(· ∘ ·), map_filter' _ Subtype.coe_injective]
#align list.filter_attach' List.filter_attach'

-- porting note: `Lean.Internal.coeM` forces us to type-ascript `{x // x ∈ l}`
lemma filter_attach (l : List α) (p : α → Bool) :
(l.attach.filter fun x => p x : List {x // x ∈ l}) =
(l.filter p).attach.map (Subtype.map id fun x => mem_of_mem_filter) :=
map_injective_iff.2 Subtype.coe_injective <| by
simp_rw [map_map, (· ∘ ·), Subtype.map, id.def, ←Function.comp_apply (g := Subtype.val),
←map_filter, attach_map_val]
#align list.filter_attach List.filter_attach

#align list.filter_filter List.filter_filter

lemma filter_comm (q) (l : List α) : filter p (filter q l) = filter q (filter p l) := by
simp [and_comm]
#align list.filter_comm List.filter_comm

@[simp]
theorem filter_true (l : List α) :
filter (fun _ => true) l = l := by induction l <;> simp [*, filter]
Expand Down
12 changes: 11 additions & 1 deletion Mathlib/Data/List/Count.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn, M
-/
import Mathlib.Data.List.BigOperators.Basic

#align_import data.list.count from "leanprover-community/mathlib"@"47adfab39a11a072db552f47594bf8ed2cf8a722"
#align_import data.list.count from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

/-!
# Counting in lists
Expand Down Expand Up @@ -71,6 +71,11 @@ theorem length_filter_lt_length_iff_exists (l) :

#align list.countp_map List.countP_map

-- porting note: `Lean.Internal.coeM` forces us to type-ascript `{x // x ∈ l}`
lemma countP_attach (l : List α) : l.attach.countP (fun a : {x // x ∈ l} ↦ p a) = l.countP p := by
simp_rw [←Function.comp_apply (g := Subtype.val), ←countP_map, attach_map_val]
#align list.countp_attach List.countP_attach

#align list.countp_mono_left List.countP_mono_left

#align list.countp_congr List.countP_congr
Expand Down Expand Up @@ -147,6 +152,11 @@ theorem count_bind {α β} [DecidableEq β] (l : List α) (f : α → List β) (
count x (l.bind f) = sum (map (count x ∘ f) l) := by rw [List.bind, count_join, map_map]
#align list.count_bind List.count_bind

@[simp]
lemma count_attach (a : {x // x ∈ l}) : l.attach.count a = l.count ↑a :=
Eq.trans (countP_congr fun _ _ => by simp [Subtype.ext_iff]) <| countP_attach _ _
#align list.count_attach List.count_attach

@[simp]
theorem count_map_of_injective {α β} [DecidableEq α] [DecidableEq β] (l : List α) (f : α → β)
(hf : Function.Injective f) (x : α) : count (f x) (map f l) = count x l := by
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Data/List/Perm.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ import Mathlib.Data.List.Permutation
import Mathlib.Data.List.Range
import Mathlib.Data.Nat.Factorial.Basic

#align_import data.list.perm from "leanprover-community/mathlib"@"47adfab39a11a072db552f47594bf8ed2cf8a722"
#align_import data.list.perm from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

/-!
# List Permutations
Expand Down Expand Up @@ -475,7 +475,7 @@ theorem Subperm.countP_le (p : α → Bool) {l₁ l₂ : List α} :
#align list.subperm.countp_le List.Subperm.countP_le

theorem Perm.countP_congr (s : l₁ ~ l₂) {p p' : α → Bool}
(hp : ∀ x ∈ l₁, p x = p' x) : l₁.countP p = l₂.countP p' := by
(hp : ∀ x ∈ l₁, p x p' x) : l₁.countP p = l₂.countP p' := by
rw [← s.countP_eq p']
clear s
induction' l₁ with y s hs
Expand Down
57 changes: 47 additions & 10 deletions Mathlib/Data/Multiset/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ import Mathlib.Data.Set.List
import Mathlib.Data.List.Perm
import Mathlib.Init.Quot -- Porting note: added import

#align_import data.multiset.basic from "leanprover-community/mathlib"@"06a655b5fcfbda03502f9158bbf6c0f1400886f9"
#align_import data.multiset.basic from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

/-!
# Multisets
Expand Down Expand Up @@ -2091,6 +2091,10 @@ theorem filter_filter (q) [DecidablePred q] (s : Multiset α) :
Quot.inductionOn s fun l => by simp
#align multiset.filter_filter Multiset.filter_filter

lemma filter_comm (q) [DecidablePred q] (s : Multiset α) :
filter p (filter q s) = filter q (filter p s) := by simp [and_comm]
#align multiset.filter_comm Multiset.filter_comm

theorem filter_add_filter (q) [DecidablePred q] (s : Multiset α) :
filter p s + filter q s = filter (fun a => p a ∨ q a) s + filter (fun a => p a ∧ q a) s :=
Multiset.induction_on s rfl fun a s IH => by by_cases p a <;> by_cases q a <;> simp [*]
Expand All @@ -2108,6 +2112,12 @@ theorem map_filter (f : β → α) (s : Multiset β) : filter p (map f s) = map
Quot.inductionOn s fun l => by simp [List.map_filter]; rfl
#align multiset.map_filter Multiset.map_filter

lemma map_filter' {f : α → β} (hf : Injective f) (s : Multiset α)
[DecidablePred fun b => ∃ a, p a ∧ f a = b] :
(s.filter p).map f = (s.map f).filter fun b => ∃ a, p a ∧ f a = b := by
simp [(· ∘ ·), map_filter, hf.eq_iff]
#align multiset.map_filter' Multiset.map_filter'

/-! ### Simultaneously filter and map elements of a multiset -/


Expand Down Expand Up @@ -2312,6 +2322,25 @@ theorem countP_map (f : α → β) (s : Multiset α) (p : β → Prop) [Decidabl
add_comm]
#align multiset.countp_map Multiset.countP_map

-- porting note: `Lean.Internal.coeM` forces us to type-ascript `{a // a ∈ s}`
lemma countP_attach (s : Multiset α) : s.attach.countP (fun a : {a // a ∈ s} ↦ p a) = s.countP p :=
Quotient.inductionOn s fun l => by
simp only [quot_mk_to_coe, coe_countP]
-- porting note: was
-- rw [quot_mk_to_coe, coe_attach, coe_countP]
-- exact List.countP_attach _ _
rw [coe_attach]
refine (coe_countP _ _).trans ?_
convert List.countP_attach _ _
rfl
#align multiset.countp_attach Multiset.countP_attach

lemma filter_attach (s : Multiset α) (p : α → Prop) [DecidablePred p] :
(s.attach.filter fun a : {a // a ∈ s} ↦ p ↑a) =
(s.filter p).attach.map (Subtype.map id fun _ ↦ Multiset.mem_of_mem_filter) :=
Quotient.inductionOn s fun l ↦ congr_arg _ (List.filter_attach l p)
#align multiset.filter_attach Multiset.filter_attach

variable {p}

theorem countP_pos {s} : 0 < countP p s ↔ ∃ a ∈ s, p a :=
Expand Down Expand Up @@ -2348,7 +2377,7 @@ end

section

variable [DecidableEq α]
variable [DecidableEq α] {s : Multiset α}

/-- `count a s` is the multiplicity of `a` in `s`. -/
def count (a : α) : Multiset α → ℕ :=
Expand Down Expand Up @@ -2421,6 +2450,11 @@ theorem count_nsmul (a : α) (n s) : count a (n • s) = n * count a s := by
induction n <;> simp [*, succ_nsmul', succ_mul, zero_nsmul]
#align multiset.count_nsmul Multiset.count_nsmul

@[simp]
lemma count_attach (a : {x // x ∈ s}) : s.attach.count a = s.count ↑a :=
Eq.trans (countP_congr rfl fun _ _ => by simp [Subtype.ext_iff]) <| countP_attach _ _
#align multiset.count_attach Multiset.count_attach

theorem count_pos {a : α} {s : Multiset α} : 0 < count a s ↔ a ∈ s := by simp [count, countP_pos]
#align multiset.count_pos Multiset.count_pos

Expand Down Expand Up @@ -2577,14 +2611,6 @@ theorem count_map_eq_count' [DecidableEq β] (f : α → β) (s : Multiset α) (
contradiction
#align multiset.count_map_eq_count' Multiset.count_map_eq_count'

@[simp]
theorem attach_count_eq_count_coe (m : Multiset α) (a) : m.attach.count a = m.count (a : α) :=
calc
m.attach.count a = (m.attach.map (Subtype.val : _ → α)).count (a : α) :=
(Multiset.count_map_eq_count' _ _ Subtype.coe_injective _).symm
_ = m.count (a : α) := congr_arg _ m.attach_map_val
#align multiset.attach_count_eq_count_coe Multiset.attach_count_eq_count_coe

theorem filter_eq' (s : Multiset α) (b : α) : s.filter (· = b) = replicate (count b s) b :=
Quotient.inductionOn s <| fun l => by
simp only [quot_mk_to_coe, coe_filter, mem_coe, coe_count]
Expand Down Expand Up @@ -2874,6 +2900,17 @@ theorem map_injective {f : α → β} (hf : Function.Injective f) :
Function.Injective (Multiset.map f) := fun _x _y => (map_eq_map hf).1
#align multiset.map_injective Multiset.map_injective

lemma filter_attach' (s : Multiset α) (p : {a // a ∈ s} → Prop) [DecidableEq α]
[DecidablePred p] :
s.attach.filter p =
(s.filter fun x ↦ ∃ h, p ⟨x, h⟩).attach.map (Subtype.map id fun x ↦ mem_of_mem_filter) := by
classical
refine' Multiset.map_injective Subtype.val_injective _
rw [map_filter' _ Subtype.val_injective]
simp only [Function.comp, Subtype.exists, coe_mk,
exists_and_right, exists_eq_right, attach_map_val, map_map, map_coe, id.def]
#align multiset.filter_attach' Multiset.filter_attach'

end Map

section Quot
Expand Down
4 changes: 3 additions & 1 deletion Mathlib/Data/Multiset/Lattice.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ Authors: Mario Carneiro
import Mathlib.Data.Multiset.FinsetOps
import Mathlib.Data.Multiset.Fold

#align_import data.multiset.lattice from "leanprover-community/mathlib"@"9003f28797c0664a49e4179487267c494477d853"
#align_import data.multiset.lattice from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

/-!
# Lattice operations on multisets
Expand Down Expand Up @@ -55,6 +55,7 @@ theorem sup_add (s₁ s₂ : Multiset α) : (s₁ + s₂).sup = s₁.sup ⊔ s
Eq.trans (by simp [sup]) (fold_add _ _ _ _ _)
#align multiset.sup_add Multiset.sup_add

@[simp]
theorem sup_le {s : Multiset α} {a : α} : s.sup ≤ a ↔ ∀ b ∈ s, b ≤ a :=
Multiset.induction_on s (by simp)
(by simp (config := { contextual := true }) [or_imp, forall_and])
Expand Down Expand Up @@ -139,6 +140,7 @@ theorem inf_add (s₁ s₂ : Multiset α) : (s₁ + s₂).inf = s₁.inf ⊓ s
Eq.trans (by simp [inf]) (fold_add _ _ _ _ _)
#align multiset.inf_add Multiset.inf_add

@[simp]
theorem le_inf {s : Multiset α} {a : α} : a ≤ s.inf ↔ ∀ b ∈ s, a ≤ b :=
Multiset.induction_on s (by simp)
(by simp (config := { contextual := true }) [or_imp, forall_and])
Expand Down
7 changes: 2 additions & 5 deletions Mathlib/Data/Set/Finite.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ import Mathlib.Data.Finset.Basic
import Mathlib.Data.Set.Functor
import Mathlib.Data.Finite.Basic

#align_import data.set.finite from "leanprover-community/mathlib"@"ffde2d8a6e689149e44fd95fa862c23a57f8c780"
#align_import data.set.finite from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

/-!
# Finite sets
Expand Down Expand Up @@ -1208,10 +1208,7 @@ theorem empty_card' {h : Fintype.{u} (∅ : Set α)} : @Fintype.card (∅ : Set

theorem card_fintypeInsertOfNotMem {a : α} (s : Set α) [Fintype s] (h : a ∉ s) :
@Fintype.card _ (fintypeInsertOfNotMem s h) = Fintype.card s + 1 := by
rw [fintypeInsertOfNotMem, Fintype.card_ofFinset]
simp only [Finset.card, toFinset, Finset.map_val, Embedding.coe_subtype,
Multiset.card_cons, Multiset.card_map, add_left_inj]
rfl
simp [fintypeInsertOfNotMem, Fintype.card_ofFinset]
#align set.card_fintype_insert_of_not_mem Set.card_fintypeInsertOfNotMem

@[simp]
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/NumberTheory/KummerDedekind.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ Authors: Anne Baanen, Paul Lezeau
import Mathlib.RingTheory.DedekindDomain.Ideal
import Mathlib.RingTheory.IsAdjoinRoot

#align_import number_theory.kummer_dedekind from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
#align_import number_theory.kummer_dedekind from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

/-!
# Kummer-Dedekind theorem
Expand Down Expand Up @@ -297,7 +297,7 @@ theorem normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map (hI : I
rw [Multiset.count_map_eq_count' fun f =>
((normalizedFactorsMapEquivNormalizedFactorsMinPolyMk hI hI' hx hx').symm f :
Ideal S),
Multiset.attach_count_eq_count_coe]
Multiset.count_attach]
· exact Subtype.coe_injective.comp (Equiv.injective _)
· exact (normalizedFactorsMapEquivNormalizedFactorsMinPolyMk hI hI' hx hx' _).prop
· exact irreducible_of_normalized_factor _
Expand Down

0 comments on commit 92d78f8

Please sign in to comment.