Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

Commit

Permalink
feat(category_theory/bicategory/coherence_tactic): coherence tactic f…
Browse files Browse the repository at this point in the history
…or bicategories (#13417)

This PR extends the coherence tactic for monoidal categories #13125 to bicategories. The setup is the same as for monoidal case except for the following : we normalize 2-morphisms before running the coherence tactic. This normalization is achieved by the set of simp lemmas in `whisker_simps` defined in `coherence_tactic.lean`.

As a test of the tactic in the real world, I have proved several properties of adjunction in bicategories in #13418. Unfortunately some proofs cause timeout, so it seems that we need to speed up the coherence tactic in the future.



Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
  • Loading branch information
yuma-mizuno and kim-em committed May 2, 2022
1 parent db0b495 commit 08241e6
Show file tree
Hide file tree
Showing 3 changed files with 308 additions and 51 deletions.
244 changes: 244 additions & 0 deletions src/category_theory/bicategory/coherence_tactic.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,244 @@
/-
Copyright (c) 2022 Yuma Mizuno. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuma Mizuno
-/
import category_theory.bicategory.coherence

/-!
# A `coherence` tactic for bicategories, and `⊗≫` (composition up to associators)
We provide a `coherence` tactic,
which proves that any two 2-morphisms (with the same source and target)
in a bicategory which are built out of associators and unitors
are equal.
We also provide `f ⊗≫ g`, the `bicategorical_comp` operation,
which automatically inserts associators and unitors as needed
to make the target of `f` match the source of `g`.
This file mainly deals with the type class setup for the coherence tactic. The actual front end
tactic is given in `category_theory/monooidal/coherence.lean` at the same time as the coherence
tactic for monoidal categories.
-/

noncomputable theory

universes w v u

open category_theory
open category_theory.free_bicategory
open_locale bicategory

variables {B : Type u} [bicategory.{w v} B] {a b c d e : B}

namespace category_theory.bicategory

/-- A typeclass carrying a choice of lift of a 1-morphism from `B` to `free_bicategory B`. -/
class lift_hom {a b : B} (f : a ⟶ b) :=
(lift : of.obj a ⟶ of.obj b)

instance lift_hom_id : lift_hom (𝟙 a) := { lift := 𝟙 (of.obj a), }
instance lift_hom_comp (f : a ⟶ b) (g : b ⟶ c) [lift_hom f] [lift_hom g] : lift_hom (f ≫ g) :=
{ lift := lift_hom.lift f ≫ lift_hom.lift g, }
@[priority 100]
instance lift_hom_of (f : a ⟶ b) : lift_hom f := { lift := of.map f, }

/-- A typeclass carrying a choice of lift of a 2-morphism from `B` to `free_bicategory B`. -/
class lift_hom₂ {f g : a ⟶ b} [lift_hom f] [lift_hom g] (η : f ⟶ g) :=
(lift : lift_hom.lift f ⟶ lift_hom.lift g)

instance lift_hom₂_id (f : a ⟶ b) [lift_hom f] : lift_hom₂ (𝟙 f) :=
{ lift := 𝟙 _, }
instance lift_hom₂_left_unitor_hom (f : a ⟶ b) [lift_hom f] : lift_hom₂ (λ_ f).hom :=
{ lift := (λ_ (lift_hom.lift f)).hom, }
instance lift_hom₂_left_unitor_inv (f : a ⟶ b) [lift_hom f] : lift_hom₂ (λ_ f).inv :=
{ lift := (λ_ (lift_hom.lift f)).inv, }
instance lift_hom₂_right_unitor_hom (f : a ⟶ b) [lift_hom f] : lift_hom₂ (ρ_ f).hom :=
{ lift := (ρ_ (lift_hom.lift f)).hom, }
instance lift_hom₂_right_unitor_inv (f : a ⟶ b) [lift_hom f] : lift_hom₂ (ρ_ f).inv :=
{ lift := (ρ_ (lift_hom.lift f)).inv, }
instance lift_hom₂_associator_hom (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d)
[lift_hom f] [lift_hom g] [lift_hom h] :
lift_hom₂ (α_ f g h).hom :=
{ lift := (α_ (lift_hom.lift f) (lift_hom.lift g) (lift_hom.lift h)).hom, }
instance lift_hom₂_associator_inv (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d)
[lift_hom f] [lift_hom g] [lift_hom h] :
lift_hom₂ (α_ f g h).inv :=
{ lift := (α_ (lift_hom.lift f) (lift_hom.lift g) (lift_hom.lift h)).inv, }
instance lift_hom₂_comp {f g h : a ⟶ b} [lift_hom f] [lift_hom g] [lift_hom h]
(η : f ⟶ g) (θ : g ⟶ h) [lift_hom₂ η] [lift_hom₂ θ] : lift_hom₂ (η ≫ θ) :=
{ lift := lift_hom₂.lift η ≫ lift_hom₂.lift θ }
instance lift_hom₂_whisker_left (f : a ⟶ b) [lift_hom f] {g h : b ⟶ c} (η : g ⟶ h)
[lift_hom g] [lift_hom h] [lift_hom₂ η] : lift_hom₂ (f ◁ η) :=
{ lift := lift_hom.lift f ◁ lift_hom₂.lift η }
instance lift_hom₂_whisker_right {f g : a ⟶ b} (η : f ⟶ g) [lift_hom f] [lift_hom g] [lift_hom₂ η]
{h : b ⟶ c} [lift_hom h] : lift_hom₂ (η ▷ h) :=
{ lift := lift_hom₂.lift η ▷ lift_hom.lift h }

/--
A typeclass carrying a choice of bicategorical structural isomorphism between two objects.
Used by the `⊗≫` bicategorical composition operator, and the `coherence` tactic.
-/
class bicategorical_coherence (f g : a ⟶ b) [lift_hom f] [lift_hom g] :=
(hom [] : f ⟶ g)
[is_iso : is_iso hom . tactic.apply_instance]

attribute [instance] bicategorical_coherence.is_iso

namespace bicategorical_coherence

@[simps]
instance refl (f : a ⟶ b) [lift_hom f] : bicategorical_coherence f f := ⟨𝟙 _⟩

@[simps]
instance whisker_left
(f : a ⟶ b) (g h : b ⟶ c) [lift_hom f][lift_hom g] [lift_hom h] [bicategorical_coherence g h] :
bicategorical_coherence (f ≫ g) (f ≫ h) :=
⟨f ◁ bicategorical_coherence.hom g h⟩

@[simps]
instance whisker_right
(f g : a ⟶ b) (h : b ⟶ c) [lift_hom f] [lift_hom g] [lift_hom h] [bicategorical_coherence f g] :
bicategorical_coherence (f ≫ h) (g ≫ h) :=
⟨bicategorical_coherence.hom f g ▷ h⟩

@[simps]
instance tensor_right (f : a ⟶ b) (g : b ⟶ b) [lift_hom f] [lift_hom g]
[bicategorical_coherence (𝟙 b) g] :
bicategorical_coherence f (f ≫ g) :=
⟨(ρ_ f).inv ≫ (f ◁ bicategorical_coherence.hom (𝟙 b) g)⟩

@[simps]
instance tensor_right' (f : a ⟶ b) (g : b ⟶ b) [lift_hom f] [lift_hom g]
[bicategorical_coherence g (𝟙 b)] :
bicategorical_coherence (f ≫ g) f :=
⟨(f ◁ bicategorical_coherence.hom g (𝟙 b)) ≫ (ρ_ f).hom⟩

@[simps]
instance left (f g : a ⟶ b) [lift_hom f] [lift_hom g] [bicategorical_coherence f g] :
bicategorical_coherence (𝟙 a ≫ f) g :=
⟨(λ_ f).hom ≫ bicategorical_coherence.hom f g⟩

@[simps]
instance left' (f g : a ⟶ b) [lift_hom f] [lift_hom g] [bicategorical_coherence f g] :
bicategorical_coherence f (𝟙 a ≫ g) :=
⟨bicategorical_coherence.hom f g ≫ (λ_ g).inv⟩

@[simps]
instance right (f g : a ⟶ b) [lift_hom f] [lift_hom g] [bicategorical_coherence f g] :
bicategorical_coherence (f ≫ 𝟙 b) g :=
⟨(ρ_ f).hom ≫ bicategorical_coherence.hom f g⟩

@[simps]
instance right' (f g : a ⟶ b) [lift_hom f] [lift_hom g] [bicategorical_coherence f g] :
bicategorical_coherence f (g ≫ 𝟙 b) :=
⟨bicategorical_coherence.hom f g ≫ (ρ_ g).inv⟩

@[simps]
instance assoc (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (i : a ⟶ d)
[lift_hom f] [lift_hom g] [lift_hom h] [lift_hom i] [bicategorical_coherence (f ≫ (g ≫ h)) i] :
bicategorical_coherence ((f ≫ g) ≫ h) i :=
⟨(α_ f g h).hom ≫ bicategorical_coherence.hom (f ≫ (g ≫ h)) i⟩

@[simps]
instance assoc' (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (i : a ⟶ d)
[lift_hom f] [lift_hom g] [lift_hom h] [lift_hom i] [bicategorical_coherence i (f ≫ (g ≫ h))] :
bicategorical_coherence i ((f ≫ g) ≫ h) :=
⟨bicategorical_coherence.hom i (f ≫ (g ≫ h)) ≫ (α_ f g h).inv⟩

end bicategorical_coherence

/-- Construct an isomorphism between two objects in a bicategorical category
out of unitors and associators. -/
def bicategorical_iso (f g : a ⟶ b) [lift_hom f] [lift_hom g] [bicategorical_coherence f g] :
f ≅ g :=
as_iso (bicategorical_coherence.hom f g)

/-- Compose two morphisms in a bicategorical category,
inserting unitors and associators between as necessary. -/
def bicategorical_comp {f g h i : a ⟶ b} [lift_hom g] [lift_hom h]
[bicategorical_coherence g h] (η : f ⟶ g) (θ : h ⟶ i) : f ⟶ i :=
η ≫ bicategorical_coherence.hom g h ≫ θ

localized "infixr ` ⊗≫ `:80 := category_theory.bicategory.bicategorical_comp"
in bicategory -- type as \ot \gg

/-- Compose two isomorphisms in a bicategorical category,
inserting unitors and associators between as necessary. -/
def bicategorical_iso_comp {f g h i : a ⟶ b} [lift_hom g] [lift_hom h]
[bicategorical_coherence g h] (η : f ≅ g) (θ : h ≅ i) : f ≅ i :=
η ≪≫ as_iso (bicategorical_coherence.hom g h) ≪≫ θ

localized "infixr ` ≪⊗≫ `:80 := category_theory.bicategory.bicategorical_iso_comp"
in bicategory -- type as \ot \gg

example {f' : a ⟶ d} {f : a ⟶ b} {g : b ⟶ c} {h : c ⟶ d} {h' : a ⟶ d}
(η : f' ⟶ f ≫ (g ≫ h)) (θ : (f ≫ g) ≫ h ⟶ h') : f' ⟶ h' := η ⊗≫ θ

-- To automatically insert unitors/associators at the beginning or end,
-- you can use `η ⊗≫ 𝟙 _`
example {f' : a ⟶ d } {f : a ⟶ b} {g : b ⟶ c} {h : c ⟶ d} (η : f' ⟶ (f ≫ g) ≫ h) :
f' ⟶ f ≫ (g ≫ h) := η ⊗≫ 𝟙 _

@[simp] lemma bicategorical_comp_refl {f g h : a ⟶ b} (η : f ⟶ g) (θ : g ⟶ h) :
η ⊗≫ θ = η ≫ θ :=
by { dsimp [bicategorical_comp], simp, }

end category_theory.bicategory

open category_theory.bicategory

namespace tactic

setup_tactic_parser

/-- Coherence tactic for bicategories. -/
meta def bicategorical_coherence : tactic unit :=
focus1 $
do
o ← get_options, set_options $ o.set_nat `class.instance_max_depth 128,
try `[dsimp],
`(%%lhs = %%rhs) ← target,
to_expr ``((free_bicategory.lift (prefunctor.id _)).map₂ (lift_hom₂.lift %%lhs) =
(free_bicategory.lift (prefunctor.id _)).map₂ (lift_hom₂.lift %%rhs))
>>= tactic.change,
congr

namespace bicategory

/-- Simp lemmas for rewriting a 2-morphism into a normal form. -/
meta def whisker_simps : tactic unit :=
`[simp only [
category_theory.category.assoc,
category_theory.bicategory.comp_whisker_left,
category_theory.bicategory.id_whisker_left,
category_theory.bicategory.whisker_right_comp,
category_theory.bicategory.whisker_right_id,
category_theory.bicategory.whisker_left_comp,
category_theory.bicategory.whisker_left_id,
category_theory.bicategory.comp_whisker_right,
category_theory.bicategory.id_whisker_right,
category_theory.bicategory.whisker_assoc]]

namespace coherence

/--
Auxiliary simp lemma for the `coherence` tactic:
this move brackets to the left in order to expose a maximal prefix
built out of unitors and associators.
-/
-- We have unused typeclass arguments here.
-- They are intentional, to ensure that `simp only [assoc_lift_hom₂]` only left associates
-- bicategorical structural morphisms.
@[nolint unused_arguments]
lemma assoc_lift_hom₂ {f g h i : a ⟶ b} [lift_hom f] [lift_hom g] [lift_hom h]
(η : f ⟶ g) (θ : g ⟶ h) (ι : h ⟶ i) [lift_hom₂ η] [lift_hom₂ θ] :
η ≫ (θ ≫ ι) = (η ≫ θ) ≫ ι :=
(category.assoc _ _ _).symm

end coherence

end bicategory

end tactic
47 changes: 28 additions & 19 deletions src/category_theory/monoidal/coherence.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Yuma Mizuno, Oleksandr Manzyuk
-/
import category_theory.monoidal.free.coherence
import category_theory.bicategory.coherence_tactic

/-!
# A `coherence` tactic for monoidal categories, and `⊗≫` (composition up to associators)
Expand Down Expand Up @@ -217,8 +218,7 @@ Users will typicall just use the `coherence` tactic, which can also cope with id
`a ≫ f ≫ b ≫ g ≫ c = a' ≫ f ≫ b' ≫ g ≫ c'`
where `a = a'`, `b = b'`, and `c = c'` can be proved using `pure_coherence`
-/
-- TODO: provide the `bicategory_coherence` tactic, and add that here.
meta def pure_coherence : tactic unit := monoidal_coherence
meta def pure_coherence : tactic unit := monoidal_coherence <|> bicategorical_coherence

example (X₁ X₂ : C) :
((λ_ (𝟙_ C)).inv ⊗ 𝟙 (X₁ ⊗ X₂)) ≫ (α_ (𝟙_ C) (𝟙_ C) (X₁ ⊗ X₂)).hom ≫
Expand Down Expand Up @@ -254,7 +254,7 @@ do
o ← get_options, set_options $ o.set_nat `class.instance_max_depth 128,
try `[simp only [monoidal_comp, category_theory.category.assoc]] >>
`[apply (cancel_epi (𝟙 _)).1; try { apply_instance }] >>
try `[simp only [tactic.coherence.assoc_lift_hom]]
try `[simp only [tactic.coherence.assoc_lift_hom, tactic.bicategory.coherence.assoc_lift_hom₂]]

example {W X Y Z : C} (f : Y ⟶ Z) (g) (w : false) : (λ_ _).hom ≫ f = g :=
begin
Expand All @@ -267,21 +267,8 @@ end coherence

open coherence

/--
Use the coherence theorem for monoidal categories to solve equations in a monoidal equation,
where the two sides only differ by replacing strings of monoidal structural morphisms
(that is, associators, unitors, and identities)
with different strings of structural morphisms with the same source and target.
That is, `coherence` can handle goals of the form
`a ≫ f ≫ b ≫ g ≫ c = a' ≫ f ≫ b' ≫ g ≫ c'`
where `a = a'`, `b = b'`, and `c = c'` can be proved using `pure_coherence`.
(If you have very large equations on which `coherence` is unexpectedly failing,
you may need to increase the typeclass search depth,
using e.g. `set_option class.instance_max_depth 500`.)
-/
meta def coherence : tactic unit :=
/-- The main part of `coherence` tactic. -/
meta def coherence_loop : tactic unit :=
do
-- To prove an equality `f = g` in a monoidal category,
-- first try the `pure_coherence` tactic on the entire equation:
Expand All @@ -306,7 +293,29 @@ do
-- with identical first terms,
reflexivity <|> fail "`coherence` tactic failed, non-structural morphisms don't match",
-- and whose second terms can be identified by recursively called `coherence`.
coherence)
coherence_loop)

/--
Use the coherence theorem for monoidal categories to solve equations in a monoidal equation,
where the two sides only differ by replacing strings of monoidal structural morphisms
(that is, associators, unitors, and identities)
with different strings of structural morphisms with the same source and target.
That is, `coherence` can handle goals of the form
`a ≫ f ≫ b ≫ g ≫ c = a' ≫ f ≫ b' ≫ g ≫ c'`
where `a = a'`, `b = b'`, and `c = c'` can be proved using `pure_coherence`.
(If you have very large equations on which `coherence` is unexpectedly failing,
you may need to increase the typeclass search depth,
using e.g. `set_option class.instance_max_depth 500`.)
-/
meta def coherence : tactic unit :=
do
try `[simp only [bicategorical_comp]],
try `[simp only [monoidal_comp]],
-- TODO: put similar normalization simp lemmas for monoidal categories
try bicategory.whisker_simps,
coherence_loop

run_cmd add_interactive [`pure_coherence, `coherence]

Expand Down
Loading

0 comments on commit 08241e6

Please sign in to comment.