Skip to content

Commit

Permalink
Update Thu 14 Dec 2023 09:25:14 PM EST
Browse files Browse the repository at this point in the history
  • Loading branch information
avigad committed Dec 15, 2023
1 parent 434b90f commit d8bb710
Show file tree
Hide file tree
Showing 26 changed files with 1,132 additions and 1,092 deletions.
2 changes: 1 addition & 1 deletion .buildinfo
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 803b947a09f3db5a52c6c529e3761a53
config: 9821478498fa33697c987b601aae688f
tags: 645f666f9bcd5a90fca523b33c5a78b7
22 changes: 12 additions & 10 deletions C01_Introduction.html
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />

<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>1. Introduction &mdash; Mathematics in Lean 0.1 documentation</title>
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
Expand All @@ -15,6 +16,7 @@
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
Expand Down Expand Up @@ -83,10 +85,10 @@
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">

<div class="section" id="introduction">
<span id="id1"></span><h1><span class="section-number">1. </span>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">&#61633;</a></h1>
<div class="section" id="getting-started">
<h2><span class="section-number">1.1. </span>Getting Started<a class="headerlink" href="#getting-started" title="Permalink to this headline">&#61633;</a></h2>
<section id="introduction">
<span id="id1"></span><h1><span class="section-number">1. </span>Introduction<a class="headerlink" href="#introduction" title="Permalink to this heading">&#61633;</a></h1>
<section id="getting-started">
<h2><span class="section-number">1.1. </span>Getting Started<a class="headerlink" href="#getting-started" title="Permalink to this heading">&#61633;</a></h2>
<p>The goal of this book is to teach you to formalize mathematics using the
Lean 4 interactive proof assistant.
It assumes that you know some mathematics, but it does not require much.
Expand Down Expand Up @@ -171,9 +173,9 @@ <h2><span class="section-number">1.1. </span>Getting Started<a class="headerlink
the relevant skills, feel free to move on.
You can always compare your solutions to the ones in the <code class="docutils literal notranslate"><span class="pre">solutions</span></code>
folder associated with each section.</p>
</div>
<div class="section" id="overview">
<h2><span class="section-number">1.2. </span>Overview<a class="headerlink" href="#overview" title="Permalink to this headline">&#61633;</a></h2>
</section>
<section id="overview">
<h2><span class="section-number">1.2. </span>Overview<a class="headerlink" href="#overview" title="Permalink to this heading">&#61633;</a></h2>
<p>Put simply, Lean is a tool for building complex expressions in a formal language
known as <em>dependent type theory</em>.</p>
<p id="index-0">Every expression has a <em>type</em>, and you can use the <cite>#check</cite> command to
Expand Down Expand Up @@ -345,8 +347,8 @@ <h2><span class="section-number">1.2. </span>Overview<a class="headerlink" href=
Bartosz Piotrowski, Nicolas Rolland, Guilherme Silva, Floris van Doorn, and Eric Wieser.
Our work has been partially supported by the Hoskinson Center for
Formal Mathematics.</p>
</div>
</div>
</section>
</section>


</div>
Expand Down
40 changes: 21 additions & 19 deletions C02_Basics.html
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />

<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>2. Basics &mdash; Mathematics in Lean 0.1 documentation</title>
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
Expand All @@ -15,6 +16,7 @@
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script src="_static/js/theme.js"></script>
Expand Down Expand Up @@ -87,14 +89,14 @@
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">

<div class="section" id="basics">
<span id="id1"></span><h1><span class="section-number">2. </span>Basics<a class="headerlink" href="#basics" title="Permalink to this headline">&#61633;</a></h1>
<section id="basics">
<span id="id1"></span><h1><span class="section-number">2. </span>Basics<a class="headerlink" href="#basics" title="Permalink to this heading">&#61633;</a></h1>
<p>This chapter is designed to introduce you to the nuts and
bolts of mathematical reasoning in Lean: calculating,
applying lemmas and theorems,
and reasoning about generic structures.</p>
<div class="section" id="calculating">
<h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" href="#calculating" title="Permalink to this headline">&#61633;</a></h2>
<section id="calculating">
<h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" href="#calculating" title="Permalink to this heading">&#61633;</a></h2>
<p>We generally learn to carry out mathematical calculations
without thinking of them as proofs.
But when we justify each step in a calculation,
Expand Down Expand Up @@ -383,9 +385,9 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
<span class="n">rw</span> <span class="o">[</span><span class="n">add_mul</span><span class="o">]</span>
</pre></div>
</div>
</div>
<div class="section" id="proving-identities-in-algebraic-structures">
<span id="id2"></span><h2><span class="section-number">2.2. </span>Proving Identities in Algebraic Structures<a class="headerlink" href="#proving-identities-in-algebraic-structures" title="Permalink to this headline">&#61633;</a></h2>
</section>
<section id="proving-identities-in-algebraic-structures">
<span id="id2"></span><h2><span class="section-number">2.2. </span>Proving Identities in Algebraic Structures<a class="headerlink" href="#proving-identities-in-algebraic-structures" title="Permalink to this heading">&#61633;</a></h2>
<p id="index-7">Mathematically, a ring consists of a collection of objects,
<span class="math notranslate nohighlight">\(R\)</span>, operations <span class="math notranslate nohighlight">\(+\)</span> <span class="math notranslate nohighlight">\(\times\)</span>, and constants <span class="math notranslate nohighlight">\(0\)</span>
and <span class="math notranslate nohighlight">\(1\)</span>, and an operation <span class="math notranslate nohighlight">\(x \mapsto -x\)</span> such that:</p>
Expand Down Expand Up @@ -703,9 +705,9 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
<cite>noncomm_ring</cite> and <cite>ring</cite>. This is partly for historical reasons,
but also for the convenience of using a shorter name for the
tactic that deals with commutative rings, since it is used more often.</p>
</div>
<div class="section" id="using-theorems-and-lemmas">
<span id="id3"></span><h2><span class="section-number">2.3. </span>Using Theorems and Lemmas<a class="headerlink" href="#using-theorems-and-lemmas" title="Permalink to this headline">&#61633;</a></h2>
</section>
<section id="using-theorems-and-lemmas">
<span id="id3"></span><h2><span class="section-number">2.3. </span>Using Theorems and Lemmas<a class="headerlink" href="#using-theorems-and-lemmas" title="Permalink to this heading">&#61633;</a></h2>
<p id="index-16">Rewriting is great for proving equations,
but what about other sorts of theorems?
For example, how can we prove an inequality,
Expand Down Expand Up @@ -972,9 +974,9 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
</div>
<p>If you managed to solve this, congratulations!
You are well on your way to becoming a master formalizer.</p>
</div>
<div class="section" id="more-examples-using-apply-and-rw">
<span id="more-on-order-and-divisibility"></span><h2><span class="section-number">2.4. </span>More examples using apply and rw<a class="headerlink" href="#more-examples-using-apply-and-rw" title="Permalink to this headline">&#61633;</a></h2>
</section>
<section id="more-examples-using-apply-and-rw">
<span id="more-on-order-and-divisibility"></span><h2><span class="section-number">2.4. </span>More examples using apply and rw<a class="headerlink" href="#more-examples-using-apply-and-rw" title="Permalink to this heading">&#61633;</a></h2>
<p id="index-21">The <code class="docutils literal notranslate"><span class="pre">min</span></code> function on the real numbers is uniquely characterized
by the following three facts:</p>
<div class="highlight-lean notranslate"><div class="highlight"><pre><span></span><span class="k">#check</span> <span class="o">(</span><span class="n">min_le_left</span> <span class="n">a</span> <span class="n">b</span> <span class="o">:</span> <span class="n">min</span> <span class="n">a</span> <span class="n">b</span> <span class="bp">&#8804;</span> <span class="n">a</span><span class="o">)</span>
Expand Down Expand Up @@ -1174,9 +1176,9 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
the one specifically for the natural numbers.
You can use <code class="docutils literal notranslate"><span class="pre">_root_.dvd_antisymm</span></code> to specify the generic one;
either one will work.</p>
</div>
<div class="section" id="proving-facts-about-algebraic-structures">
<span id="id4"></span><h2><span class="section-number">2.5. </span>Proving Facts about Algebraic Structures<a class="headerlink" href="#proving-facts-about-algebraic-structures" title="Permalink to this headline">&#61633;</a></h2>
</section>
<section id="proving-facts-about-algebraic-structures">
<span id="id4"></span><h2><span class="section-number">2.5. </span>Proving Facts about Algebraic Structures<a class="headerlink" href="#proving-facts-about-algebraic-structures" title="Permalink to this heading">&#61633;</a></h2>
<p id="index-27">In <a class="reference internal" href="#proving-identities-in-algebraic-structures"><span class="std std-numref">Section 2.2</span></a>,
we saw that many common identities governing the real numbers hold
in more general classes of algebraic structures,
Expand Down Expand Up @@ -1389,8 +1391,8 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
</div>
<p>We recommend making use of the theorem <code class="docutils literal notranslate"><span class="pre">nonneg_of_mul_nonneg_left</span></code>.
As you may have guessed, this theorem is called <code class="docutils literal notranslate"><span class="pre">dist_nonneg</span></code> in Mathlib.</p>
</div>
</div>
</section>
</section>


</div>
Expand Down
Loading

0 comments on commit d8bb710

Please sign in to comment.