Skip to content

MIVisionX Infrastructure for Neural Net Training and Inference with Optimized Data Augmentation through RALI

License

Notifications You must be signed in to change notification settings

kiritigowda/MIVisionX-Neural-Net-Workflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MIT licensed

MIVisionX Neural Net Workflow

MIVisionX infrastructure for ML Model training with optimized data augmentation with rocal and ML Model Inference Validation using pre-trained ONNX/NNEF/Caffe models and data augmentation to analyze, summarize, & validate.

Training

ML training with PyTorch using dockers.

Inference

Inference with pre-trained models for validation and performance measurement.

Pre-trained models in ONNX, NNEF, & Caffe formats are supported by MIVisionX. The app first converts the pre-trained models to AMD Neural Net Intermediate Representation (NNIR), once the model has been translated into AMD NNIR (AMD's internal open format), the Optimizer goes through the NNIR and applies various optimizations which would allow the model to be deployed on to target hardware most efficiently. Finally, AMD NNIR is converted into OpenVX C code, which is compiled and wrapped with a python API to run on any targeted hardware.

Analyzer Index

Prerequisites

  • Ubuntu 16.04/18.04 or CentOS 7.5/7.6
  • ROCm supported hardware
    • AMD Radeon GPU or AMD APU required
  • Latest ROCm
  • Build & Install MIVisionX
  • Install Python QT graph module
    pip install pyqtgraph
    
  • Export Path & Libraries required
    export PATH=$PATH:/opt/rocm/mivisionx/bin
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib:/opt/rocm/rpp/lib
    
  • Install OpenMP
sudo apt-get install libomp-dev
  • Set number of OpenMP Threads
export OMP_NUM_THREADS=<number of threads to use>

Use MIVisionX Docker

MIVisionX provides developers with docker images for Ubuntu 16.04, Ubuntu 18.04, CentOS 7.5, & CentOS 7.6. Using docker images developers can quickly prototype and build applications without having to be locked into a single system setup or lose valuable time figuring out the dependencies of the underlying software.

Docker with display option

sudo docker pull mivisionx/ubuntu-18.04:latest
xhost +local:root
sudo docker run -it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host --env DISPLAY=unix$DISPLAY --privileged --volume $XAUTH:/root/.Xauthority --volume /tmp/.X11-unix/:/tmp/.X11-unix mivisionx/ubuntu-18.04:latest
  • Test display with MIVisionX sample
export PATH=$PATH:/opt/rocm/mivisionx/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib:/opt/rocm/rpp/lib
runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf

Usage

Command Line Interface (CLI)

usage: python mivisionx_validation_tool.py  [-h] 
                                            --model_format MODEL_FORMAT 
                                            --model_name MODEL_NAME 
                                            --model MODEL 
                                            --model_input_dims MODEL_INPUT_DIMS 
                                            --model_output_dims MODEL_OUTPUT_DIMS
                                            --model_batch_size MODEL_BATCH_SIZE 
                                            --rocal_mode rocal_MODE
                                            --label LABEL 
                                            --output_dir OUTPUT_DIR 
                                            --image_dir IMAGE_DIR
                                            [--image_val IMAGE_VAL] 
                                            [--hierarchy HIERARCHY]
                                            [--add ADD] 
                                            [--multiply MULTIPLY]
                                            [--fp16 FP16]
                                            [--replace REPLACE] 
                                            [--verbose VERBOSE]

Usage help

  -h, --help            show this help message and exit
  --model_format        pre-trained model format, options:caffe/onnx/nnef [required]
  --model_name          model name                                        [required]
  --model               pre_trained model file/folder                     [required]
  --model_input_dims    c,h,w - channel,height,width                      [required]
  --model_output_dims   c,h,w - channel,height,width                      [required]
  --model_batch_size    n - batch size                                    [required]
  --rocal_mode           rocal mode (1/2/3)                                 [required]
  --label               labels text file                                  [required]
  --output_dir          output dir to store ADAT results                  [required]
  --image_dir           image directory for analysis                      [required]
  --image_val           image list with ground truth                      [optional]
  --hierarchy           AMD proprietary hierarchical file                 [optional]
  --add                 input preprocessing factor      [optional - default:[0,0,0]]
  --multiply            input preprocessing factor      [optional - default:[1,1,1]]
  --fp16                quantize model to FP16           [optional - default:no]
  --replace             replace/overwrite model              [optional - default:no]
  --verbose             verbose                              [optional - default:no]

Graphical User Interface (GUI)

usage: python mivisionx_validation_tool.py

Supported Pre-Trained Model Formats

  • Caffe
  • NNEF
  • ONNX

Samples

Sample 1 - Using Pre-Trained ONNX Model

Run SqueezeNet on sample images

  • Step 1: Clone MIVisionX Validation Tool Project

    cd && mkdir sample-1 && cd sample-1
    git clone https://github.com/kiritigowda/MIVisionX-validation-tool.git
    

    Note:

    • MIVisionX needs to be pre-installed
    • MIVisionX Model Compiler & Optimizer scripts are at /opt/rocm/mivisionx/model_compiler/python/
    • ONNX model conversion requires ONNX install using pip install onnx
  • Step 2: Download pre-trained SqueezeNet ONNX model from ONNX Model Zoo - SqueezeNet Model

    wget https://s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz
    tar -xvf squeezenet.tar.gz
    

    Note: pre-trained model - squeezenet/model.onnx

  • Step 3: Use the command below to run the inference validation tool

    • View inference validation tool usage
    cd ~/sample-1/MIVisionX-validation-tool/
    export PATH=$PATH:/opt/rocm/mivisionx/bin
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib:/opt/rocm/rpp/lib
    python mivisionx_validation_tool.py -h
    
    • Run SqueezeNet Inference validation tool
    python mivisionx_validation_tool.py --model_format onnx --model_name SqueezeNet --model ~/sample-1/squeezenet/model.onnx --model_input_dims 3,224,224 --model_output_dims 1000,1,1 --model_batch_size 64 --rocal_mode 1 --label ./sample/labels.txt --output_dir ~/sample-1/ --image_dir ../../data/images/AMD-tinyDataSet/ --image_val ./sample/AMD-tinyDataSet-val.txt --hierarchy ./sample/hierarchy.csv --replace yes
    

Sample 2 - Using Pre-Trained Caffe Model

Run VGG 16 on sample images

  • Step 1: Clone MIVisionX Inference Validation Tool Project

    cd && mkdir sample-2 && cd sample-2
    git clone https://github.com/kiritigowda/MIVisionX-validation-tool.git
    

    Note:

    • MIVisionX needs to be pre-installed
    • MIVisionX Model Compiler & Optimizer scripts are at /opt/rocm/mivisionx/model_compiler/python/
  • Step 2: Download pre-trained VGG 16 caffe model - VGG_ILSVRC_16_layers.caffemodel

    wget http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
    
  • Step 3: Use the command below to run the inference validation tool

    • View inference validation tool usage
    cd ~/sample-2/MIVisionX-validation-tool/
    export PATH=$PATH:/opt/rocm/mivisionx/bin
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib:/opt/rocm/rpp/lib
    python mivisionx_validation_tool.py -h
    
    • Run VGGNet-16 Inference Validation Tool
    python mivisionx_validation_tool.py --model_format caffe --model_name VggNet-16-Caffe --model ~/sample-2/VGG_ILSVRC_16_layers.caffemodel --model_input_dims 3,224,224 --model_output_dims 1000,1,1 --model_batch_size 64 --rocal_mode 1 --label ./sample/labels.txt --output_dir ~/sample-2/ --image_dir ../../data/images/AMD-tinyDataSet/ --image_val ./sample/AMD-tinyDataSet-val.txt --hierarchy ./sample/hierarchy.csv --replace yes
    

Sample 3 - Using Pre-Trained NNEF Model

Run VGG 16 on sample images

  • Step 1: Clone MIVisionX Inference Validation Tool Project

    cd && mkdir sample-3 && cd sample-3
    git clone https://github.com/kiritigowda/MIVisionX-validation-tool.git
    

    Note:

    • MIVisionX needs to be pre-installed
    • MIVisionX Model Compiler & Optimizer scripts are at /opt/rocm/mivisionx/model_compiler/python/
    • NNEF model conversion requires NNEF python parser installed
  • Step 2: Download pre-trained VGG 16 NNEF model

    mkdir ~/sample-3/vgg16
    cd ~/sample-3/vgg16
    wget https://sfo2.digitaloceanspaces.com/nnef-public/vgg16.onnx.nnef.tgz
    tar -xvf vgg16.onnx.nnef.tgz
    
  • Step 3: Use the command below to run the inference analyzer

    • View inference validation tool usage
    cd ~/sample-3/MIVisionX-validation-tool/
    export PATH=$PATH:/opt/rocm/mivisionx/bin
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib:/opt/rocm/rpp/lib
    python mivisionx_validation_tool.py -h
    
    • Run VGGNet-16 Inference Validation Tool
    python mivisionx_validation_tool.py --model_format nnef --model_name VggNet-16-NNEF --model ~/sample-3/vgg16/ --model_input_dims 3,224,224 --model_output_dims 1000,1,1 --model_batch_size 64 --rocal_mode 1 --label ./sample/labels.txt --output_dir ~/sample-3/ --image_dir ../../data/images/AMD-tinyDataSet/ --image_val ./sample/AMD-tinyDataSet-val.txt --hierarchy ./sample/hierarchy.csv --replace yes
    
  • Preprocessing the model: Use the --add/--multiply option to preprocess the input images

      python mivisionx_validation_tool.py --model_format nnef --model_name VggNet-16-NNEF --model ~/sample-3/vgg16/ --model_input_dims 3,224,224 --model_output_dims 1000,1,1 --model_batch_size 64 --rocal_mode 1 --label ./sample/labels.txt --output_dir ~/sample-3/ --image_dir ../../data/images/AMD-tinyDataSet/ --image_val ./sample/AMD-tinyDataSet-val.txt --hierarchy ./sample/hierarchy.csv --replace yes --add [-2.1179,-2.0357,-1.8044] --multiply [0.0171,0.0175,0.0174]
    

About

MIVisionX Infrastructure for Neural Net Training and Inference with Optimized Data Augmentation through RALI

Topics

Resources

License

Stars

Watchers

Forks

Contributors 3

  •  
  •  
  •  

Languages