Skip to content

Python implementation of miQC: probablistic quality control of scRNA-seq data

License

Notifications You must be signed in to change notification settings

keller-mark/miqc-py

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

miqc-py

PyPI

Python implementation of miQC (paper).

Installation

pip install miqc_py

Usage

Usage follows the scverse API conventions. Parameter names follow the R implementation of miQC.

import miqc_py

# ...

miqc_py.calculate_miqc(adata)
miqc_py.filter_cells(adata)

Plotting

Optionally, we can plot the results with altair (not a dependency of miqc_py - may need to install first).

import altair as alt

alt.Chart(adata.obs).mark_circle().encode(
    x="total_genes_by_counts:Q",
    y="pct_counts_mito:Q",
    color="prob_compromised:Q"
)

Development

conda env create -f environment.yml
conda activate miqc-py
jupyter lab

About

Python implementation of miQC: probablistic quality control of scRNA-seq data

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages