Skip to content
forked from gcanti/io-ts

TypeScript compatible runtime type system for IO decoding/encoding

License

Notifications You must be signed in to change notification settings

jjoekoullas/io-ts

 
 

Repository files navigation

build status dependency status npm downloads Minified Size

The idea

Blog post: "Typescript and validations at runtime boundaries" by @lorefnon

A value of type Type<A, O, I> (called "codec") is the runtime representation of the static type A.

Also a codec can

  • decode inputs of type I (through decode)
  • encode outputs of type O (through encode)
  • be used as a custom type guard (through is)
class Type<A, O, I> {
  readonly _A: A
  readonly _O: O
  readonly _I: I
  constructor(
    /** a unique name for this codec */
    readonly name: string,
    /** a custom type guard */
    readonly is: (u: unknown) => u is A,
    /** succeeds if a value of type I can be decoded to a value of type A */
    readonly validate: (input: I, context: Context) => Either<Errors, A>,
    /** converts a value of type A to a value of type O */
    readonly encode: (a: A) => O
  ) {}
  /** a version of `validate` with a default context */
  decode(i: I): Either<Errors, A>
}

Note. The Either type is defined in fp-ts, a library containing implementations of common algebraic types in TypeScript.

Example

A codec representing string can be defined as

import * as t from 'io-ts'

const isString = (u: unknown): u is string => typeof u === 'string'

const string = new t.Type<string, string, unknown>(
  'string',
  isString,
  (u, c) => (isString(u) ? t.success(u) : t.failure(u, c)),
  t.identity
)

A codec can be used to validate an object in memory (for example an API payload)

import * as t from 'io-ts'

const User = t.type({
  userId: t.number,
  name: t.string
})

// validation succeeded
User.decode(JSON.parse('{"userId":1,"name":"Giulio"}')) // => Right({ userId: 1, name: "Giulio" })

// validation failed
User.decode(JSON.parse('{"name":"Giulio"}')) // => Left([...])

TypeScript compatibility

The stable version is tested against TypeScript 3.2.4.

io-ts version required TypeScript version
1.6.x 3.2.2+
1.5.3 3.0.1+
1.5.2- 2.7.2+

Note. If you are running < typescript@3.0.1 you have to polyfill unknown.

You can use unknown-ts as a polyfill.

Error reporters

A reporter implements the following interface

interface Reporter<A> {
  report: (validation: Validation<any>) => A
}

This package exports a default PathReporter reporter

Example

import { PathReporter } from 'io-ts/lib/PathReporter'

const result = User.decode({ name: 'Giulio' })

console.log(PathReporter.report(result))
// => [ 'Invalid value undefined supplied to : { userId: number, name: string }/userId: number' ]

You can define your own reporter. Errors has the following type

interface ContextEntry {
  readonly key: string
  readonly type: Decoder<any, any>
}

interface Context extends ReadonlyArray<ContextEntry> {}

interface ValidationError {
  readonly value: unknown
  readonly context: Context
}

interface Errors extends Array<ValidationError> {}

Example

const getPaths = <A>(v: t.Validation<A>): Array<string> => {
  return v.fold(errors => errors.map(error => error.context.map(({ key }) => key).join('.')), () => ['no errors'])
}

console.log(getPaths(User.decode({}))) // => [ '.userId', '.name' ]

Custom error messages

You can set your own error message by providing a message argument to failure

Example

const NumberFromString = new t.Type<number, string, unknown>(
  'NumberFromString',
  t.number.is,
  (u, c) =>
    t.string.validate(u, c).chain(s => {
      const n = +s
      return isNaN(n) ? t.failure(u, c, 'cannot parse to a number') : t.success(n)
    }),
  String
)

console.log(PathReporter.report(NumberFromString.decode('a')))
// => ['cannot parse to a number']

Community

  • io-ts-types - A collection of codecs and combinators for use with io-ts
  • io-ts-reporters - Error reporters for io-ts
  • geojson-iots - codecs for GeoJSON as defined in rfc7946 made with io-ts
  • graphql-to-io-ts - Generate typescript and cooresponding io-ts types from a graphql schema

TypeScript integration

codecs can be inspected

instrospection

This library uses TypeScript extensively. Its API is defined in a way which automatically infers types for produced values

inference

Note that the type annotation isn't needed, TypeScript infers the type automatically based on a schema (and comments are preserved).

Static types can be extracted from codecs using the TypeOf operator

type User = t.TypeOf<typeof User>

// same as
type User = {
  userId: number
  name: string
}

Implemented types / combinators

Type TypeScript codec / combinator
null null t.null or t.nullType
undefined undefined t.undefined
void void t.void or t.voidType
string string t.string
number number t.number
boolean boolean t.boolean
unknown unknown t.unknown
never never t.never
object object t.object
array of unknown Array<unknown> t.UnknownArray
array of type Array<A> t.array(A)
record of unknown Record<string, unknown> t.UnknownRecord
record of type Record<K, A> t.record(K, A)
function Function t.Function
literal 's' t.literal('s')
partial Partial<{ name: string }> t.partial({ name: t.string })
readonly Readonly<A> t.readonly(A)
readonly array ReadonlyArray<A> t.readonlyArray(A)
type alias type T = { name: A } t.type({ name: A })
tuple [ A, B ] t.tuple([ A, B ])
union A | B t.union([ A, B ]) or t.taggedUnion(tag, [ A, B ])
intersection A & B t.intersection([ A, B ])
keyof keyof M t.keyof(M)
recursive types t.recursion(name, definition)
branded types / refinements t.brand(A, predicate, brand)
integer t.Int (built-in branded codec)
exact types t.exact(type)
strict t.strict({ name: A }) (an alias of t.exact(t.type({ name: A })))

Recursive types

Recursive types can't be inferred by TypeScript so you must provide the static type as a hint

interface Category {
  name: string
  categories: Array<Category>
}

const Category: t.RecursiveType<t.Type<Category>> = t.recursion('Category', () =>
  t.type({
    name: t.string,
    categories: t.array(Category)
  })
)

Mutually recursive types

interface Foo {
  type: 'Foo'
  b: Bar | undefined
}

interface Bar {
  type: 'Bar'
  a: Foo | undefined
}

const Foo: t.RecursiveType<t.Type<Foo>> = t.recursion('Foo', () =>
  t.interface({
    type: t.literal('Foo'),
    b: t.union([Bar, t.undefined])
  })
)

const Bar: t.RecursiveType<t.Type<Bar>> = t.recursion('Bar', () =>
  t.interface({
    type: t.literal('Bar'),
    a: t.union([Foo, t.undefined])
  })
)

const FooBar = t.taggedUnion('type', [Foo, Bar])

Tagged unions

If you are encoding tagged unions, instead of the general purpose union combinator, you may want to use the taggedUnion combinator in order to get better performances

const A = t.type({
  tag: t.literal('A'),
  foo: t.string
})

const B = t.type({
  tag: t.literal('B'),
  bar: t.number
})

// the actual presence of the tag is statically checked
const U = t.taggedUnion('tag', [A, B])

Branded types / Refinements

You can brand / refine a codec (any codec) using the brand combinator

// a unique brand for positive numbers
interface PositiveBrand {
  readonly Positive: unique symbol // use `unique symbol` here to ensure uniqueness across modules / packages
}

const Positive = t.brand(
  t.number, // a codec representing the type to be refined
  (n): n is t.Branded<number, PositiveBrand> => n >= 0, // a custom type guard using the build-in helper `Branded`
  'Positive' // the name must match the readonly field in the brand
)

type Positive = t.TypeOf<typeof Positive>
/*
same as
type Positive = number & t.Brand<PositiveBrand>
*/

Branded codecs can be merged with t.intersection

// t.Int is a built-in branded codec
const PositiveInt = t.intersection([t.Int, Positive])

type PositiveInt = t.TypeOf<typeof PositiveInt>
/*
same as
type PositiveInt = number & t.Brand<t.IntBrand> & t.Brand<PositiveBrand>
*/

Exact types

You can make a codec exact (which means that additional properties are stripped) using the exact combinator

const ExactUser = t.exact(User)

User.decode({ userId: 1, name: 'Giulio', age: 45 }) // ok, result is right({ userId: 1, name: 'Giulio', age: 45 })
ExactUser.decode({ userId: 1, name: 'Giulio', age: 43 }) // ok but result is right({ userId: 1, name: 'Giulio' })

Mixing required and optional props

You can mix required and optional props using an intersection

const A = t.type({
  foo: t.string
})

const B = t.partial({
  bar: t.number
})

const C = t.intersection([A, B])

type C = t.TypeOf<typeof C>

// same as
type C = {
  foo: string
} & {
  bar?: number | undefined
}

You can apply partial to an already defined codec via its props field

const PartialUser = t.partial(User.props)

type PartialUser = t.TypeOf<typeof PartialUser>

// same as
type PartialUser = {
  name?: string
  age?: number
}

Custom types

You can define your own types. Let's see an example

// represents a Date from an ISO string
const DateFromString = new t.Type<Date, string, unknown>(
  'DateFromString',
  (u): u is Date => u instanceof Date,
  (u, c) =>
    t.string.validate(u, c).chain(s => {
      const d = new Date(s)
      return isNaN(d.getTime()) ? t.failure(u, c) : t.success(d)
    }),
  a => a.toISOString()
)

const s = new Date(1973, 10, 30).toISOString()

DateFromString.decode(s)
// right(new Date('1973-11-29T23:00:00.000Z'))

DateFromString.decode('foo')
// left(errors...)

Note that you can deserialize while validating.

Generic Types

Polymorphic codecs are represented using functions. For example, the following typescript:

interface ResponseBody<T> {
  result: T
  _links: Links
}
interface Links {
  previous: string
  next: string
}

Would be:

// t.Mixed = t.Type<any, any, unknown>
const ResponseBody = <C extends t.Mixed>(codec: C) =>
  t.interface({
    result: type,
    _links: Links
  })

const Links = t.interface({
  previous: t.string,
  next: t.string
})

And used like:

const UserModel = t.type({
  name: t.string
})

functionThatRequiresRuntimeType(ResponseBody(t.array(UserModel)), ...params)

Piping

You can pipe two codecs if their type parameters do align

const NumberCodec = new t.Type<number, string, string>(
  'NumberCodec',
  t.number.is,
  (s, c) => {
    const n = parseFloat(s)
    return isNaN(n) ? t.failure(s, c) : t.success(n)
  },
  String
)

const NumberFromString = t.string.pipe(
  NumberCodec,
  'NumberFromString'
)

Tips and Tricks

Is there a way to turn the checks off in production code?

No, however you can define your own logic for that (if you really trust the input)

import * as t from 'io-ts'
import { Either, right } from 'fp-ts/lib/Either'

const { NODE_ENV } = process.env

export function unsafeDecode<A, O, I>(value: I, codec: t.Type<A, O, I>): Either<t.Errors, A> {
  if (NODE_ENV !== 'production' || codec.encode !== t.identity) {
    return codec.decode(value)
  } else {
    // unsafe cast
    return right(value as any)
  }
}

// or...

import { failure } from 'io-ts/lib/PathReporter'

export function unsafeGet<A, O, I>(value: I, codec: t.Type<A, O, I>): A {
  if (NODE_ENV !== 'production' || type.encode !== t.identity) {
    return codec.decode(value).getOrElseL(errors => {
      throw new Error(failure(errors).join('\n'))
    })
  } else {
    // unsafe cast
    return value as any
  }
}

Union of string literals

Use keyof instead of union when defining a union of string literals

const Bad = t.union([
  t.literal('foo'),
  t.literal('bar'),
  t.literal('baz')
  // etc...
])

const Good = t.keyof({
  foo: null,
  bar: null,
  baz: null
  // etc...
})

Benefits

  • unique check for free
  • better performance, O(log(n)) vs O(n)

About

TypeScript compatible runtime type system for IO decoding/encoding

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • TypeScript 96.6%
  • JavaScript 3.4%