Skip to content

iglesias/gsp_bss

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Blind Demixing of Sparse Signals Diffused on Graphs

MATLAB solver for blind separation of sparse signals diffused on graphs. [1]

Diffusion of signals defined on the nodes of a graph is a generalization of the convolution from classical signal processing. [2] [3]

[1] F. J. Iglesias, S. Segarra, S. Rey-Escudero, A. G. Marques and D. Ramírez, Demixing and Blind Deconvolution of Graph-Diffused Sparse Signals. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary (2018) (check in Google scholar).

[2] D. I. Shuman, et al., The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains. IEEE signal processing magazine (2013).

[3] G. Mateos, et al., Connecting the Dots: Identifying Network Structure via Graph Signal Processing. IEEE signal processing magazine (2019).

ICASSP 2018

Scenario 1. Single random graph (multiple diffusing filters on the same graph).

>> addpath experiment/experiment_singlegraph_bss_logdet
>> singlegraph_bss_logdet_N_S_numFilters
>> % Long for 1000 simulations!
>> % Alternatively, there are pre-generated mat files
>> % in experiment/experiment_singlegraph_bss_logdet.

>> % Crunch data from mat files and produce mean and median RMSE plots.
>> analysis_singlegraph_bss_logdet

Scenario 2. Two coupled random graphs.

TODO

Scenario 3. Multiple brain graphs.

>> addpath experiment/experiment_brain_bss_logdet
>> brain_bss_logdet_S_numGraphs
>> % Very long for 1000 simulations!
>> % Pre-generated mat files in experiment/experiment_brain_bss_logdet.

>> % Produce plot.
>> brain_bss_logdet_S_numGraphs_figure