Skip to content

hkhawar/2018_rohban_submitted

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Capturing single-cell heterogeneity via data fusion improves morphological profiling

Abstract

Single-cell resolution technologies warrant computational methods that capture cell heterogeneity while allowing efficient comparisons of populations. Here, we summarize cell populations by adding features’ measures of dispersion and covariances to population averages, in the context of morphological profiling. We find that data fusion is critical for these metrics to improve results over the prior state-of-the-art, providing ~30% better performance in tasks including predicting a compound’s mechanism of action (MoA) and a gene’s pathway.

Prerequisites

  • Mac OS X

  • R Ver. 3.3.3

  • Following R packages: dplyr 0.7.4 magrittr 1.5 foreach 1.4.4 stringr 1.2.0 readr 1.1.1 doParallel 1.0.11 SNFtool 2.2 ggplot2 2.2.1 Matrix 1.2-8 htmlTable 1.6 cytominer 0.1.0.9000 (https://github.com/cytomining/cytominer)

  • aws command line interface (https://docs.aws.amazon.com/cli/latest/userguide/cli-install-macos.html) configured to access cellpainting-datasets s3 bucket.

  • Package installation time is about an hour on a typical PC.

  • Note : For each dataset, create a separate clone of the repository. Then, cd code.

  • Note : TA-ORF-BBBC037-Rohban is the smallest dataset consisting of only around 5 plates, so can also be used for the demo purposes. Each plate takes on average between 2 to 3 hours to get processed on a normal PC. Bioactives-BBBC022-Gustafsdottir and CDRPBIO-BBBC036-Bray consist of 20 and 55 plates, respectively.

Creating median+MAD profiles

  • Bioactives-BBBC022-Gustafsdottir : parallel -j 1 './profile_trad.R --name=Bioactives-BBBC022-Gustafsdottir --batch=BBBC022_2013 --plate={1} --operation="median+mad" --col="Metadata_broad_sample" --value="DMSO" --cores=2 --feats="../input/feature_list_BBBC022.txt"' :::: ../input/processed_plates_BBBC022.txt
  • TA-ORF-BBBC037-Rohban : parallel -j 1 './profile_trad.R --name=TA-ORF-BBBC037-Rohban --batch=SIGMA2_Pilot_2013_10_11 --plate={1} --operation="median+mad" --col="Metadata_ASSAY_WELL_ROLE" --value="Untreated" --cores=2 --feats="../input/feature_list.txt"' :::: ../input/processed_plates_TA.txt
  • CDRPBIO-BBBC036-Bray : parallel -j 1 './profile_trad.R --name=CDRPBIO-BBBC036-Bray --batch=CDRP --plate={1} --operation="median+mad" --col="Metadata_broad_sample" --value="DMSO" --cores=2 --feats="../input/feature_list.txt"' :::: ../input/processed_plates_CDRP_bio.txt

Creating cov. profiles

  • Bioactives-BBBC022-Gustafsdottir :
rm ../input/random_projection_unified.rds

mv ../input/random_projection_unified_BBBC022.rds ../input/random_projection_unified.rds

parallel -j 1 './profile.R --name=Bioactives-BBBC022-Gustafsdottir --batch=BBBC022_2013 --plate={1} --dim=3000 --rdensity=0.1 --core=2 --col=Metadata_broad_sample --value="DMSO" --feats="../input/feature_list_BBBC022.txt"' :::: ../input/processed_plates_BBBC022.txt 

  • TA-ORF-BBBC037-Rohban : parallel -j 1 './profile.R --name=TA-ORF-BBBC037-Rohban --batch=SIGMA2_Pilot_2013_10_11 --plate={1} --dim=3000 --rdensity=0.1 --core=2 --col=Metadata_ASSAY_WELL_ROLE --value="Untreated" --feats="../input/feature_list.txt"' :::: ../input/processed_plates_TA.txt
  • CDRPBIO-BBBC036-Bray : parallel -j 1 './profile.R --name=CDRPBIO-BBBC036-Bray --batch=CDRP --plate={1} --dim=3000 --rdensity=0.1 --core=2 --col=Metadata_broad_sample --value="DMSO" --feats="../input/feature_list.txt"' :::: ../input/processed_plates_CDRP_bio.txt

Creating the treatment correlation matrices

  • Bioactives-BBBC022-Gustafsdottir :
./evaluate.R -m "median" -p "../input/processed_plates_BBBC022.txt" -e ../input/metadata_BBBC022.csv -f "../input/feature_list_BBBC022.txt"

./evaluate.R -m "mad" -p "../input/processed_plates_BBBC022.txt" -e ../input/metadata_BBBC022.csv -f "../input/feature_list_BBBC022.txt"

./evaluate.R -m "cov" -p "../input/processed_plates_BBBC022.txt" -e ../input/metadata_BBBC022.csv -f "../input/feature_list_BBBC022.txt"

./evaluate.R -m "median+mad" -p "../input/processed_plates_BBBC022.txt" -e ../input/metadata_BBBC022.csv -f "../input/feature_list_BBBC022.txt"

  • TA-ORF-BBBC037-Rohban :
./evaluate.R -m "median" -p "../input/processed_plates_TA.txt" -e ../input/metadata_TA.csv -f "../input/feature_list.txt"

./evaluate.R -m "mad" -p "../input/processed_plates_TA.txt" -e ../input/metadata_TA.csv -f "../input/feature_list.txt"

./evaluate.R -m "cov" -p "../input/processed_plates_TA.txt" -e ../input/metadata_TA.csv -f "../input/feature_list.txt"

./evaluate.R -m "median+mad" -p "../input/processed_plates_TA.txt" -e ../input/metadata_TA.csv -f "../input/feature_list.txt"

  • CDRPBIO-BBBC036-Bray :
./evaluate.R -m "median" -p "../input/processed_plates_CDRP_bio.txt" -e ../input/metadata_CDRP.csv -f "../input/feature_list.txt"

./evaluate.R -m "mad" -p "../input/processed_plates_CDRP_bio.txt" -e ../input/metadata_CDRP.csv -f "../input/feature_list.txt"

./evaluate.R -m "cov" -p "../input/processed_plates_CDRP_bio.txt" -e ../input/metadata_CDRP.csv -f "../input/feature_list.txt"

./evaluate.R -m "median+mad" -p "../input/processed_plates_CDRP_bio.txt" -e ../input/metadata_CDRP.csv -f "../input/feature_list.txt"

Generating Fig. 1A (enrichment comparison plot)

  • Run ./compare_mean_cov.R -p chemical for Bioactives-BBBC022-Gustafsdottir and CDRPBIO-BBBC036-Bray
  • Run ./compare_mean_cov.R -p genetic for TA-ORF-BBBC037-Rohban

Generating Fig. 1B (similarity graphs for an MOA)

  • Run sub_corr_plot.R for CDRPBIO-BBBC036-Bray

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 85.3%
  • C++ 13.7%
  • Shell 1.0%