Automated Diagnosis for Extraction Difficulty of Maxillary and Mandibular Third Molars and Post-Extraction Complications Using Deep Learning
RTX 2080ti with python 3.8, pytorch 1.9.0, torchvision 0.10.0 and CUDA 11.3
- Set up a python environment
conda create -n third-molar python=3.8
conda activate third-molar
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install -U openmim
mim install mmcv-full
pip install mmsegmentation
pip install tqdm
pip install albumentations
Contact junseoklee@gm.gist.ac.kr
- Download `third-molar dataset' from MAT.
segmentation location : ailab_mat/dataset/Third_molar/mmsegmentation/
classification location : ailab_mat/dataset/Third_molar/classification/
- Organize the folders as follows
third_molar(segmentation)
├── leftImg8bit
└── train
└── 19760000.jpg.png
...
└── 4182620000.jpg.png
└── val
└── test
├── gtFine
└── train
└── 19760000.jpg.png
...
└── 4182620000.jpg.png
└── val
└── test
third_molar(classification)
├── crop_PNG_Images
└── train
└── 19760000.jpg.png
...
└── 4182620000.jpg.png
└── val
└── test
├── crop_MASK_Images
└── train
└── 19760000.jpg.png
...
└── 4182620000.jpg.png
└── val
└── test
├── Annotations
└── 19760000.jpg.png.json
└── "classTitle":"#48"
{"tags":[{"name":"P.III".......},
"name":"P.B".....}
"name":"N.3"....}
.
.
.
}
CUDA_VISIBLE_DEVICES=0,1 sh mmsegmentation/tools/dist_train.sh ${CONFIG_FILE} 2
python classification/train_down_ext.py --gpu_id 0 --model Vision_Transformer --learning_rate 0.00001 --model_name ViT_large_r50_s32_384 --batch_size 8
python mmsegmentation/tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}
python classification/test_down_ext.py --weight ${CHECKPOINT_FILE}
python demo/inference_demo.py
The source code of this repository is released only for academic use. See the license file for details.
- Junseok Lee, Jumi Park, Seongju Lee, Seong-yong Moon, Kyoobin Lee
Distributed under the MIT License.
This work was supported by the ICT R&D program of MSIT/IITP[2020-0-00857, Development of Cloud Robot Intelligence Augmentation, Sharing and Framework Technology to Integrate and Enhance the Intelligence of Multiple Robots]