Skip to content

gist-ailab/man-max-third-molar

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Automated Diagnosis for Extraction Difficulty of Maxillary and Mandibular Third Molars and Post-Extraction Complications Using Deep Learning

overview

model

Getting Started

Environment Setup

RTX 2080ti with python 3.8, pytorch 1.9.0, torchvision 0.10.0 and CUDA 11.3

  1. Set up a python environment
conda create -n third-molar python=3.8
conda activate third-molar
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install -U openmim
mim install mmcv-full
pip install mmsegmentation

pip install tqdm
pip install albumentations

Train & Evaluation

Dataset Availability

Contact junseoklee@gm.gist.ac.kr

Dataset Preparation

  1. Download `third-molar dataset' from MAT.
segmentation location : ailab_mat/dataset/Third_molar/mmsegmentation/
classification location : ailab_mat/dataset/Third_molar/classification/
  1. Organize the folders as follows
third_molar(segmentation)
├── leftImg8bit
       └── train
              └── 19760000.jpg.png
              ...
              └── 4182620000.jpg.png
       └── val
       └── test

├── gtFine
       └── train
              └── 19760000.jpg.png
              ...
              └── 4182620000.jpg.png
       └── val
       └── test

third_molar(classification)
├── crop_PNG_Images
       └── train
              └── 19760000.jpg.png
              ...
              └── 4182620000.jpg.png
       └── val
       └── test

├── crop_MASK_Images
       └── train
              └── 19760000.jpg.png
              ...
              └── 4182620000.jpg.png
       └── val
       └── test
├── Annotations
       └── 19760000.jpg.png.json
              └── "classTitle":"#48"
                  {"tags":[{"name":"P.III".......},
                            "name":"P.B".....}
                            "name":"N.3"....}
                            .
                            .
                            .
                            }

Train on segmentation&classification dataset

CUDA_VISIBLE_DEVICES=0,1 sh mmsegmentation/tools/dist_train.sh ${CONFIG_FILE} 2
python classification/train_down_ext.py --gpu_id 0 --model Vision_Transformer --learning_rate 0.00001 --model_name ViT_large_r50_s32_384 --batch_size 8

Evaluation on test dataset

python mmsegmentation/tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}
python classification/test_down_ext.py --weight ${CHECKPOINT_FILE} 

inference on test dataset

python demo/inference_demo.py

License

The source code of this repository is released only for academic use. See the license file for details.

Authors

  • Junseok Lee, Jumi Park, Seongju Lee, Seong-yong Moon, Kyoobin Lee

License

Distributed under the MIT License.

Acknowledgments

This work was supported by the ICT R&D program of MSIT/IITP[2020-0-00857, Development of Cloud Robot Intelligence Augmentation, Sharing and Framework Technology to Integrate and Enhance the Intelligence of Multiple Robots]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages