Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove remote model downloads from CI tests #228

Merged
merged 2 commits into from
Oct 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion neuralcompression/metrics/_dists.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@


class NoTrainDists(_DISTS):
def train(self, mode: bool) -> "NoTrainDists":
def train(self, mode: bool = True) -> "NoTrainDists":
"""keep network in evaluation mode."""
return super().train(False)

Expand Down
3 changes: 0 additions & 3 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,3 @@ requires = [

[tool.setuptools_scm]
write_to = "neuralcompression/version.py"

[isort]
profile = "black"
2 changes: 1 addition & 1 deletion tests/cached_data/create_cached_tensorflow_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@


def create_input(shape, offset: int = 0):
x = np.arange(np.product(shape)).reshape(shape) + offset
x = np.arange(np.prod(shape)).reshape(shape) + offset

return torch.from_numpy(x).to(torch.get_default_dtype())

Expand Down
32 changes: 32 additions & 0 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,38 @@

import pytest
import torch
import torch.nn as nn
from torch import Tensor


class MockBackbone(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()

self.model = nn.Sequential(
nn.Conv2d(3, 2048, kernel_size=3, padding=1),
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
)
for param in self.parameters():
param.requires_grad_(False)

self.eval()

def train(self, mode: bool = True) -> "MockBackbone":
"""keep network in evaluation mode."""
return super().train(False)

def forward(self, image: Tensor) -> Tensor:
return self.model(image.float() / 255.0).flatten(1)


class MockDiffBackbone(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
self.model = MockBackbone()

def forward(self, image1: Tensor, image2: Tensor) -> Tensor:
return self.model(image1) - self.model(image2)


@pytest.fixture(
Expand Down
7 changes: 6 additions & 1 deletion tests/metrics/test_dists.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,16 +5,21 @@

import pytest
import torch
from conftest import MockDiffBackbone
from torch import Tensor

import neuralcompression.metrics._dists
from neuralcompression.metrics import DeepImageStructureTextureSimilarity


@pytest.mark.parametrize("num_samples", [5])
def test_dists(num_samples: int, arange_4d_image: Tensor):
def test_dists(num_samples: int, arange_4d_image: Tensor, monkeypatch):
if arange_4d_image.shape[1] != 3:
return

monkeypatch.setattr(
neuralcompression.metrics._dists, "NoTrainDists", MockDiffBackbone
)
metric = DeepImageStructureTextureSimilarity()

for _ in range(num_samples):
Expand Down
7 changes: 6 additions & 1 deletion tests/metrics/test_fid.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,20 +5,25 @@

import pytest
import torch
from conftest import MockBackbone
from torch import Tensor

import neuralcompression.functional as ncF
import neuralcompression.metrics._fid
from neuralcompression.metrics import FrechetInceptionDistance


@pytest.mark.parametrize("num_samples", [5])
def test_dists(num_samples: int, arange_4d_image: Tensor):
def test_fid(num_samples: int, arange_4d_image: Tensor, monkeypatch):
if arange_4d_image.shape[1] != 3:
return

rng = torch.Generator()
rng.manual_seed(55)

monkeypatch.setattr(
neuralcompression.metrics._fid, "NoTrainInceptionV3", MockBackbone
)
metric = FrechetInceptionDistance()

for _ in range(num_samples):
Expand Down
7 changes: 6 additions & 1 deletion tests/metrics/test_kid.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,17 +5,22 @@

import pytest
import torch
from conftest import MockBackbone
from torch import Tensor

import neuralcompression.functional as ncF
import neuralcompression.metrics._kid
from neuralcompression.metrics import KernelInceptionDistance


@pytest.mark.parametrize("num_samples", [5])
def test_dists(num_samples: int, arange_4d_image: Tensor):
def test_kid(num_samples: int, arange_4d_image: Tensor, monkeypatch):
if arange_4d_image.shape[1] != 3:
return

monkeypatch.setattr(
neuralcompression.metrics._kid, "NoTrainInceptionV3", MockBackbone
)
metric = KernelInceptionDistance()

for _ in range(num_samples):
Expand Down
4 changes: 2 additions & 2 deletions tests/metrics/test_pickle_size.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,13 @@

@pytest.mark.parametrize("arr_size", [64, 128, 256, (64, 64)])
def test_pickle_size(arr_size, tmp_path: Path):
x = np.reshape(np.arange(np.product(arr_size)), arr_size)
x = np.reshape(np.arange(np.prod(arr_size)), arr_size)

obj = {"thearr": x}

mem_size = pickle_size_of(obj)

tmp_file = f"pickle_size_of_{np.product(arr_size)}.pkl"
tmp_file = f"pickle_size_of_{np.prod(arr_size)}.pkl"
with open(tmp_path / tmp_file, "wb") as f:
pickle.dump(obj, f)

Expand Down
7 changes: 6 additions & 1 deletion tests/metrics/test_swav_fid.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,20 +5,25 @@

import pytest
import torch
from conftest import MockBackbone
from torch import Tensor

import neuralcompression.functional as ncF
import neuralcompression.metrics._fid_swav
from neuralcompression.metrics import FrechetInceptionDistanceSwAV


@pytest.mark.parametrize("num_samples", [5])
def test_dists(num_samples: int, arange_4d_image: Tensor):
def test_dists(num_samples: int, arange_4d_image: Tensor, monkeypatch):
if arange_4d_image.shape[1] != 3:
return

rng = torch.Generator()
rng.manual_seed(60)

monkeypatch.setattr(
neuralcompression.metrics._fid_swav, "NoTrainSwAV", MockBackbone
)
metric = FrechetInceptionDistanceSwAV()

for _ in range(num_samples):
Expand Down
16 changes: 15 additions & 1 deletion tests/metrics/test_update_patch_fid.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,12 @@

import pytest
import torch
from conftest import MockBackbone
from torch import Tensor

import neuralcompression.metrics._fid
import neuralcompression.metrics._fid_swav
import neuralcompression.metrics._kid
from neuralcompression.metrics import (
FrechetInceptionDistance,
FrechetInceptionDistanceSwAV,
Expand All @@ -16,10 +20,20 @@


@pytest.mark.parametrize("num_samples", [5])
def test_dists(num_samples: int, arange_4d_image: Tensor):
def test_dists(num_samples: int, arange_4d_image: Tensor, monkeypatch):
if arange_4d_image.shape[1] != 3:
return

monkeypatch.setattr(
neuralcompression.metrics._fid, "NoTrainInceptionV3", MockBackbone
)
monkeypatch.setattr(
neuralcompression.metrics._fid_swav, "NoTrainSwAV", MockBackbone
)
monkeypatch.setattr(
neuralcompression.metrics._kid, "NoTrainInceptionV3", MockBackbone
)

fid_metric = FrechetInceptionDistance()
fid_swav_metric = FrechetInceptionDistanceSwAV()
kid_metric = KernelInceptionDistance()
Expand Down
2 changes: 1 addition & 1 deletion tests/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@


def create_input(shape, offset: int = 0):
x = np.arange(np.product(shape)).reshape(shape) + offset
x = np.arange(np.prod(shape)).reshape(shape) + offset

return torch.from_numpy(x).to(torch.get_default_dtype())

Expand Down