Overview | References | Data | Presentation | About us
GME operates in power, gas and environmental markets. It is the exchange place for electricity and natural gas spot trading in Italy.
In the power market platform, producers and purchasers sell and buy wholesale electricity. There is an auction for every hour of the day.
Forecasting this supply function could be interesting for every energy producer.
example of supply surface obtained plotting more supply functions all together
Our objective is to forecast each time series in order to obtain an estimated supply function for future time (1-hour, 24-hours, 168-hours).
example of time series forecasting
To do this Reduced Rank Regression (RRR) and Long short-term memory neural nets (LSTM) are used, in order to compare a pure statistical method with machine learning technique.
Dataset exploration, data preprocessing and LSTM models are executed using Python and all the code is available in the PyScripts folder while RRR models are made using R and are available in the Rscripts folder.
All the references for this project are available in the ref folder.
All the data used for this project are available in the data folder (on gitlab) and here
Our slides presentation is available in the slides folder.
⊜ Alessandro Borroni
- Current Studies: Data Science Msc Student @ Università degli Studi di Milano-Bicocca (UniMiB) ;
- Background: Laurea triennale in Economia e Commercio presso l'Università degli Studi di Milano-Bicocca.
⊜ Dario Bertazioli
- Current Studies: Data Science Msc Student @ Università degli Studi di Milano-Bicocca (UniMiB) ;
- Background: Bachelor degree in Physics @ Università degli Studi di Milano.
⊜ Fabrizio D'Intinosante
- Current Studies: Data Science Msc Student @ Università degli Studi di Milano-Bicocca (UniMiB) ;
- Background: Laurea triennale in Economia e Statistica per le organizzazioni presso l'Università degli Studi di Torino.
⊜ Massimiliano Perletti
- Current Studies: Data Science Msc Student @ Università degli Studi di Milano-Bicocca (UniMiB) ;
- Background: Laurea triennale in Ingegneria dei materiali e delle nano-tecnologie presso il Politecnico di Milano.