-
Notifications
You must be signed in to change notification settings - Fork 621
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added Prediction Probability Distribution widget to Probabilistic Cla…
…ssification Report Updated metrics calculation for Regression Performance Report
- Loading branch information
1 parent
2cf009c
commit c794c5f
Showing
5 changed files
with
265 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
#!/usr/bin/env python | ||
# coding: utf-8 | ||
|
||
import json | ||
import pandas as pd | ||
|
||
import numpy as np | ||
|
||
from sklearn import metrics, preprocessing | ||
from pandas.api.types import is_numeric_dtype | ||
|
||
import plotly.graph_objs as go | ||
import plotly.figure_factory as ff | ||
|
||
from evidently.model.widget import BaseWidgetInfo, AlertStats, AdditionalGraphInfo | ||
from evidently.widgets.widget import Widget | ||
|
||
red = "#ed0400" | ||
grey = "#4d4d4d" | ||
|
||
|
||
class ProbClassProdPredDistrWidget(Widget): | ||
def __init__(self, title: str): | ||
super().__init__() | ||
self.title = title | ||
|
||
def get_info(self) -> BaseWidgetInfo: | ||
#if self.wi: | ||
return self.wi | ||
#raise ValueError("No prediction or target data provided") | ||
|
||
def calculate(self, reference_data: pd.DataFrame, production_data: pd.DataFrame, column_mapping): | ||
if column_mapping: | ||
date_column = column_mapping.get('datetime') | ||
id_column = column_mapping.get('id') | ||
target_column = column_mapping.get('target') | ||
prediction_column = column_mapping.get('prediction') | ||
num_feature_names = column_mapping.get('numerical_features') | ||
#target_names = column_mapping.get('target_names') | ||
if num_feature_names is None: | ||
num_feature_names = [] | ||
else: | ||
num_feature_names = [name for name in num_feature_names if is_numeric_dtype(reference_data[name])] | ||
|
||
cat_feature_names = column_mapping.get('categorical_features') | ||
if cat_feature_names is None: | ||
cat_feature_names = [] | ||
else: | ||
cat_feature_names = [name for name in cat_feature_names if is_numeric_dtype(reference_data[name])] | ||
|
||
else: | ||
date_column = 'datetime' if 'datetime' in reference_data.columns else None | ||
id_column = None | ||
target_column = 'target' if 'target' in reference_data.columns else None | ||
prediction_column = 'prediction' if 'prediction' in reference_data.columns else None | ||
|
||
utility_columns = [date_column, id_column, target_column, prediction_column] | ||
|
||
num_feature_names = list(set(reference_data.select_dtypes([np.number]).columns) - set(utility_columns)) | ||
cat_feature_names = list(set(reference_data.select_dtypes([np.object]).columns) - set(utility_columns)) | ||
|
||
#target_names = None | ||
|
||
if production_data is not None and target_column is not None and prediction_column is not None: | ||
production_data.replace([np.inf, -np.inf], np.nan, inplace=True) | ||
production_data.dropna(axis=0, how='any', inplace=True) | ||
|
||
array_prediction = production_data[prediction_column].to_numpy() | ||
|
||
prediction_ids = np.argmax(array_prediction, axis=-1) | ||
prediction_labels = [prediction_column[x] for x in prediction_ids] | ||
|
||
#plot support bar | ||
graphs = [] | ||
|
||
for label in prediction_column: | ||
pred_distr = ff.create_distplot( | ||
[ | ||
production_data[production_data[target_column] == label][label], | ||
production_data[production_data[target_column] != label][label] | ||
], | ||
[str(label), "other"], | ||
colors=[red, grey], | ||
bin_size = 0.05, | ||
show_curve = False, | ||
show_rug=True) | ||
|
||
pred_distr.update_layout( | ||
xaxis_title = "Probability", | ||
yaxis_title = "Share", | ||
legend = dict( | ||
orientation="h", | ||
yanchor="bottom", | ||
y=1.02, | ||
xanchor="right", | ||
x=1 | ||
) | ||
) | ||
|
||
pred_distr_json = json.loads(pred_distr.to_json()) | ||
|
||
graphs.append({ | ||
"id": "tab_" + str(label), | ||
"title": str(label), | ||
"graph":{ | ||
"data":pred_distr_json["data"], | ||
"layout":pred_distr_json["layout"], | ||
} | ||
}) | ||
|
||
self.wi = BaseWidgetInfo( | ||
title=self.title, | ||
type="tabbed_graph", | ||
details="", | ||
alertStats=AlertStats(), | ||
alerts=[], | ||
alertsPosition="row", | ||
insights=[], | ||
size=1, | ||
params={ | ||
"graphs": graphs | ||
}, | ||
additionalGraphs=[], | ||
) | ||
else: | ||
self.wi = None | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
#!/usr/bin/env python | ||
# coding: utf-8 | ||
|
||
import json | ||
import pandas as pd | ||
|
||
import numpy as np | ||
|
||
from sklearn import metrics, preprocessing | ||
from pandas.api.types import is_numeric_dtype | ||
|
||
import plotly.graph_objs as go | ||
import plotly.figure_factory as ff | ||
|
||
from evidently.model.widget import BaseWidgetInfo, AlertStats, AdditionalGraphInfo | ||
from evidently.widgets.widget import Widget | ||
|
||
red = "#ed0400" | ||
grey = "#4d4d4d" | ||
|
||
|
||
class ProbClassRefPredDistrWidget(Widget): | ||
def __init__(self, title: str): | ||
super().__init__() | ||
self.title = title | ||
|
||
def get_info(self) -> BaseWidgetInfo: | ||
if self.wi: | ||
return self.wi | ||
raise ValueError("No prediction or target data provided") | ||
|
||
def calculate(self, reference_data: pd.DataFrame, production_data: pd.DataFrame, column_mapping): | ||
if column_mapping: | ||
date_column = column_mapping.get('datetime') | ||
id_column = column_mapping.get('id') | ||
target_column = column_mapping.get('target') | ||
prediction_column = column_mapping.get('prediction') | ||
num_feature_names = column_mapping.get('numerical_features') | ||
#target_names = column_mapping.get('target_names') | ||
if num_feature_names is None: | ||
num_feature_names = [] | ||
else: | ||
num_feature_names = [name for name in num_feature_names if is_numeric_dtype(reference_data[name])] | ||
|
||
cat_feature_names = column_mapping.get('categorical_features') | ||
if cat_feature_names is None: | ||
cat_feature_names = [] | ||
else: | ||
cat_feature_names = [name for name in cat_feature_names if is_numeric_dtype(reference_data[name])] | ||
|
||
else: | ||
date_column = 'datetime' if 'datetime' in reference_data.columns else None | ||
id_column = None | ||
target_column = 'target' if 'target' in reference_data.columns else None | ||
prediction_column = 'prediction' if 'prediction' in reference_data.columns else None | ||
|
||
utility_columns = [date_column, id_column, target_column, prediction_column] | ||
|
||
num_feature_names = list(set(reference_data.select_dtypes([np.number]).columns) - set(utility_columns)) | ||
cat_feature_names = list(set(reference_data.select_dtypes([np.object]).columns) - set(utility_columns)) | ||
|
||
#target_names = None | ||
|
||
if target_column is not None and prediction_column is not None: | ||
reference_data.replace([np.inf, -np.inf], np.nan, inplace=True) | ||
reference_data.dropna(axis=0, how='any', inplace=True) | ||
|
||
array_prediction = reference_data[prediction_column].to_numpy() | ||
|
||
prediction_ids = np.argmax(array_prediction, axis=-1) | ||
prediction_labels = [prediction_column[x] for x in prediction_ids] | ||
|
||
#plot support bar | ||
graphs = [] | ||
|
||
for label in prediction_column: | ||
|
||
pred_distr = ff.create_distplot( | ||
[ | ||
reference_data[reference_data[target_column] == label][label], | ||
reference_data[reference_data[target_column] != label][label] | ||
], | ||
[str(label), "other"], | ||
colors=[red, grey], | ||
bin_size = 0.05, | ||
show_curve = False, | ||
show_rug=True | ||
) | ||
|
||
pred_distr.update_layout( | ||
xaxis_title = "Probability", | ||
yaxis_title = "Share", | ||
legend = dict( | ||
orientation="h", | ||
yanchor="bottom", | ||
y=1.02, | ||
xanchor="right", | ||
x=1 | ||
) | ||
) | ||
|
||
pred_distr_json = json.loads(pred_distr.to_json()) | ||
|
||
graphs.append({ | ||
"id": "tab_" + str(label), | ||
"title": str(label), | ||
"graph":{ | ||
"data":pred_distr_json["data"], | ||
"layout":pred_distr_json["layout"], | ||
} | ||
}) | ||
|
||
self.wi = BaseWidgetInfo( | ||
title=self.title, | ||
type="tabbed_graph", | ||
details="", | ||
alertStats=AlertStats(), | ||
alerts=[], | ||
alertsPosition="row", | ||
insights=[], | ||
size=1 if production_data is not None else 2, | ||
params={ | ||
"graphs": graphs | ||
}, | ||
additionalGraphs=[], | ||
) | ||
else: | ||
self.wi = None | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters