ExaGeoStatR
is an R-Wrapper for [ExaGeoStat framework]((https://github.com/ecrc/exageostat), a parallel high performance unified software for geostatistics on manycore systems.
- Large-scale synthetic Geostatistics data generator.
- Support exact computation of the Maximum Likelihood Estimation (MLE) function using shared-memory, GPUS, or distributed-memory systems.
- Support exact prediction
- Support approximate computation (i.e., Diagonal Super-Tile (DST) and Tile Low-Rank (TLR) of the Maximum Likelihood Estimation (MLE) function using shared-memory, GPUS, or distributed-memory systems.
- BLAS/CBLAS/LAPACK/LAPACKE optimized implementation, ex., AMD Core Math Library (ACML), Arm Performance Libraries, ATLAS, Intel Math Kernel Library (MKL), or OpenBLAS.
- Portable Hardware Locality (hwloc).
- NLopt.
- GNU Scientific Library (GSL).
- StarPU.
- Chameleon.
- HiCMA.
All these dependencies are automatically installed with the package if not exist (OpenBLAS is the default BLAS library) on the system (ExaGeoStatR v1.2.0).
We recommend you install these libraries before beginning to ensure you get all of them while using the R examples.
For installation, type at the R prompt:
install.packages("devtools")
For installation, type at the R prompt:
install.packages("geoR")
Or
-
Download the latest geoR version (*.tar.gz) from http://www.leg.ufpr.br/geoR
-
Install from the linux prompt (with root/sudo permissions) replacing "*" below by the current version number.
R CMD INSTALL geoR*.tar.gz
For installation, type at the R prompt:
install.packages("fields", dependencies = TRUE)
For installation, type at the R prompt:
install.packages("spam")
For installation, type at the R prompt:
install.packages("GpGp")
library("devtools")
Sys.setenv(MKLROOT="/opt/intel/mkl")
install_git(url="https://github.com/ecrc/exageostatR")
library("devtools")
Sys.setenv(MKLROOT="/opt/intel/mkl")
Sys.setenv(MAKE="make -j 1")
install_git(url="https://github.com/ecrc/exageostatR")
library("devtools")
Sys.setenv(MKLROOT="/opt/intel/mkl")
install_git(url="https://github.com/ecrc/exageostatR", configure.args=C('--enable-cuda'))
library("devtools")
Sys.setenv(MKLROOT="/opt/intel/mkl")
install_git(url="https://github.com/ecrc/exageostatR", configure.args=C('--enable-mpi'))
- Download exageostat_1.2.0.tar.gz from release)
- Use R to install exageostat_1.2.0.tar.gz)
install.packages(repos=NULL, "exageostat_1.2.0.tar.gz")
library("devtools")
Sys.setenv(MKLROOT="/opt/intel/mkl")
install_git(url="https://github.com/ecrc/exageostatR", configure.args=C('--enable-mpi'))
Operations:
- Generate synthetic spatial datasets (i.e., locations & environmental measurements).
- Maximum likelihood evaluation using dense matrices.
- Maximum likelihood evaluation using compressed matrices based on Tile Low-Rank(TLR).
- Maximum likelihood evaluation using matrices based on Diagonal Super-Tile(DST).
- Predicting missing values on predefined spatial locations.
- Univariate Matérn (Gaussian/Stationary)
- Univariate Matérn with Nugget (Gaussian/Stationary)
- Flexible Bivariate Matérn (Gaussian/Stationary)
- Parsimonious Bivariate Matérn (Gaussian/Stationary)
- Parsimonious trivariate Matérn (Gaussian/Stationary)
- Univariate Space/Time Matérn (Gaussian/Stationary)
- Bivariate Space/Time Matérn (Gaussian/Stationary)
- Tukey g-and-h Univariate Matérn (non-Gaussian/Stationary)
- Tukey g-and-h Univariate Power Exponential (non-Gaussian/Stationary)
User can find many test examples in tests
directory.
#!/bin/bash
#SBATCH --job-name=job_name
#SBATCH --output=output_file.txt
#SBATCH --partition=XXXX
#SBATCH --nodes=4
#SBATCH --ntasks=4
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=31
#SBATCH --time 00:30:00
# RExample.r includes one of the examples in the `tests` directory.
srun Rscript RExample.r
Intel MKL FATAL ERROR: Cannot load libmkl_avx512.so or libmkl_def.so
or
symbol lookup error: /opt/PATH_TO_MKL/lib/intel64/libmkl_intel_thread.so: undefined symbol: __kmpc_global_thread_num
We recommend the following solution:
- Navigate to installed mkl directory and find the exact path of libmkl_def.so
- Export the following command.
export LD_PRELOAD=/PATH_TO_MKL/lib/intel64/libmkl_def.so:/PATH_TO_MKL/lib/intel64/libmkl_avx2.so:/PATH_TO_MKL/lib/intel64/libmkl_core.so:/PATH_TO_MKL/lib/intel64/libmkl_intel_lp64.so:/PATH_TO_MKL/lib/intel64/libmkl_intel_thread.so:/PATH_TO_MKL/lib/intel64/libiomp5.so
- The
data
directory includes datasets from the "Competition on Spatial Statistics for Large Datasets" manuscript (here). - GeoR, Fields, spam, and GpGp packages are only required to run some examples related to the benchmarking framework.