-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
297 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,8 @@ | ||
spliceai_train_code/ | ||
|
||
note/.ipynb_checkpoints | ||
data/ | ||
note/.ipynb_checkpoints/ | ||
|
||
*.egg-info/ | ||
|
||
**/__pycache__/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import torch\n", | ||
"import torch.optim as optim\n", | ||
"from torch.optim.lr_scheduler import MultiStepLR\n", | ||
"import matplotlib.pyplot as plt" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 25, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD4CAYAAAAHHSreAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAeeElEQVR4nO3de3hU9b3v8fc395BAAuQyAQIBCUISUDAiCvVSoASlgnqs2NPKqT1FWvS057S7otvebbft3m09WqvFdrdY21KqUrMVoYBYKwUFvAAhXGJQEi4hAQG5hpDf/iPLNiQhGZKQNZP5vJ4nz8ys+f1mPmse8TOz1po15pxDRESksSi/A4iISOhROYiISDMqBxERaUblICIizagcRESkmRi/A3SGtLQ0l5OT0665dXV1AMTE+PdShEIG5VCOUM+gHJ2fY8OGDTXOufSW7usW5ZCTk8P69evbNbempgaAtLS0zowUdhmUQzlCPYNydH4OM3v/XPdps5KIiDSjchARkWZUDiIi0ozKQUREmlE5iIhIM0GVg5kVmdk2Myszs3kt3G9m9oh3/0YzG9PWXDO71cxKzKzezAqbPN593vhtZjalIysoIiLnr81yMLNo4DFgKpAH3G5meU2GTQVyvb/ZwONBzN0M3Ay82uT58oCZQD5QBPzcexwREekiwXzPYSxQ5pwrBzCzhcB0YEujMdOBp1zD+b/XmlmqmWUBOeea65wr9ZY1fb7pwELn3Clgp5mVeRnWtG8Vz23f4ZOsLNkHQNWpA5398EHLjD/tewblCN0c/RLruHJIGv4eUS+RJphy6A9UNLpdCVwRxJj+Qc5t6fnWtvBYZzGz2TR8SmHgwIFtPGTLqo6cZEXpfgBeef9Eux6jM1w7KNH3DMoRwjkGJnKmHgb1z/Q1h0SWYMqh2Vt7oOkvBJ1rTDBz2/N8OOfmA/MBCgsL2/WLRZdkp/Lv/2MUoG+fKkfo5vjuM6+zefdhXzNI5Almh3QlkN3o9gBgT5BjgpnbnucTiRgj+6ew7/BJdtYc8zuKRJBgymEdkGtmg80sjoadxcVNxhQDd3hHLY0DDjvn9gY5t6liYKaZxZvZYBp2cr9xHusk0q0U9E8BYOnmfT4nkUjSZjk45+qAu4FlQCmwyDlXYmZzzGyON2wJUA6UAU8CX2ptLoCZ3WRmlcCVwItmtsybUwIsomGH91JgrnPuTCetr0jY6d0jluw+iSwtUTlI1wnqrKzOuSU0FEDjZU80uu6AucHO9ZYvBhafY873ge8Hk00kEhT0T+Gpt3ay59AJ+qUm+h1HIoC+IS0SBkZ6m5b+ok8P0kVUDiJhIL1nPMMyk7VpSbqMykEkTBTlB3hj50EOHD3ldxSJACoHkTAxpSBAvYMVpVV+R5EIoHIQCRN5Wb3I7pPISzqkVbqAykEkTJgZRfkBVpfVcOTkab/jSDenchAJI0UFAU6fcazaut/vKNLNqRxEwsjo7N5k9IzXt6XlglM5iISRqChjSn6AV7ZVc6JWJw6QC0flIBJmigoCnDh9hld3VPsdRboxlYNImBk7uA+pPWJZpk1LcgGpHETCTGx0FJNGZLKitIraunq/40g3pXIQCUNF+QGOnKxjTbm/P2Eq3ZfKQSQMTchNo0dctI5akgtG5SAShhJio7lueAbLt+zjTH27fiVXpFUqB5EwNbUgQM3RWja8/4HfUaQbUjmIhKlrL84gLiZKm5bkglA5iISp5PgYrs5NY1nJPhp+jFGk86gcRMLYlPwAuw+dYPPuI35HkW5G5SASxiaNyCQ6ylhastfvKNLNqBxEwljvpDjGDemj/Q7S6VQOImGuKD/Au9XH2FH1od9RpBtROYiEuU/kBwD06UE6lcpBJMxl9krgskG9WVqicpDOo3IQ6QaK8gOU7DlCxcHjfkeRbkLlININTPE2LS3TpwfpJCoHkW5gYN8e5GX10n4H6TQqB5FuoqggwIZdH7D/yEm/o0g3oHIQ6SaKCgI4B3/ZUuV3FOkGVA4i3URuRjJD0pK0aUk6hcpBpJswM6YUBFhTfoBDx2v9jiNhTuUg0o0U5Qc4U+9YUbrf7ygS5lQOIt3IqAEp9EtJ0KYl6bCgysHMisxsm5mVmdm8Fu43M3vEu3+jmY1pa66Z9TGz5Wa2w7vs7S2PNbMFZrbJzErN7L7OWFGRSPDRpqVXd1Rz7FSd33EkjLVZDmYWDTwGTAXygNvNLK/JsKlArvc3G3g8iLnzgJXOuVxgpXcb4FYg3jk3ErgMuMvMctq7giKRpig/QG1dPa9sq/Y7ioSxYD45jAXKnHPlzrlaYCEwvcmY6cBTrsFaINXMstqYOx1Y4F1fAMzwrjsgycxigESgFtAvmYgEqTCnD32T4nSuJemQYMqhP1DR6HaltyyYMa3NzXTO7QXwLjO85c8Ax4C9wC7gP5xzB5uGMrPZZrbezNZXV+sdkshHoqOMT+Rn8nJpFSdPn/E7joSpYMrBWljW9AdrzzUmmLlNjQXOAP2AwcBXzWxIswdxbr5zrtA5V5ient7GQ4pElin5AY7VnmF1WY3fUSRMBVMOlUB2o9sDgD1BjmltbpW36Qnv8qNj7z4NLHXOnXbO7QdWA4VB5BQRz1UXpdEzPkZHLUm7BVMO64BcMxtsZnHATKC4yZhi4A7vqKVxwGFvU1Frc4uBWd71WcDz3vVdwMe9x0oCxgFb27l+IhEpLiaKiSMyWF5aRd2Zer/jSBhqsxycc3XA3cAyoBRY5JwrMbM5ZjbHG7YEKAfKgCeBL7U215vzEDDZzHYAk73b0HB0UzKwmYZy+bVzbmNHV1Qk0hQVZHHo+Gne2Nlsl51Im2KCGeScW0JDATRe9kSj6w6YG+xcb/kBYGILy4/ScDiriHTANcPSSYiNYmnJPq4amuZ3HAkz+oa0SDeVGBfNtcMyWFayj/r6to4DETmbykGkGysqCFB15BRvVx7yO4qEGZWDSDd23fAMYqONZTpqSc6TykGkG0tJjOWqi9J4afM+GnYNigRH5SDSzRUVBNh18Dilez/0O4qEEZWDSDc3OS+TKEPnWpLzonIQ6ebSkuO5PKeP9jvIeVE5iESAooIA26o+pLz6qN9RJEyoHEQiwJT8AADLSqp8TiLhQuUgEgH6pSZyyYAU7XeQoKkcRCLElIIA71QcYs+hE35HkTCgchCJEEXepqW/6NODBEHlIBIhhqQnMywzmZd01JIEQeUgEkGK8gOse+8gNUdP+R1FQpzKQSSCFBVkUe9gxRYdtSStUzmIRJARWT0Z2KeHjlqSNqkcRCKImVFUEGB1WQ1HTp72O46EMJWDSISZkh/g9BnHqq37/Y4iIUzlIBJhRmenktEznqU6aklaoXIQiTBRUcaU/ACvbKvmRO0Zv+NIiFI5iESgooIAJ06f4a/bq/2OIiFK5SASgcYO7kNqj1iW6aglOQeVg0gEio2OYtKITFaUVlFbV+93HAlBKgeRCDW1IMCHJ+tYU37A7ygSglQOIhFq/NA0kuKiddSStEjlIBKhEmKjuW54Bsu37ONMvfM7joQYlYNIBCsqCFBztJYN73/gdxQJMSoHkQh27cUZxMVEadOSNKNyEIlgyfExXJ2bxrKSfTinTUvyTyoHkQg3JT/A7kMn2LT7sN9RJISoHEQi3KQRmURHmTYtyVlUDiIRrndSHFcO6cvSzdq0JP+kchARphQEKK85Rtn+o35HkRARVDmYWZGZbTOzMjOb18L9ZmaPePdvNLMxbc01sz5mttzMdniXvRvdN8rM1phZiZltMrOEjq6oiJzblLxMzNCmJfmHNsvBzKKBx4CpQB5wu5nlNRk2Fcj1/mYDjwcxdx6w0jmXC6z0bmNmMcDTwBznXD5wLaCfrBK5gDJ6JTBmYG/9fKj8QzCfHMYCZc65cudcLbAQmN5kzHTgKddgLZBqZlltzJ0OLPCuLwBmeNc/AWx0zr0D4Jw74JzTSedFLrCi/AAle45QcfC431EkBARTDv2Bika3K71lwYxpbW6mc24vgHeZ4S0fBjgzW2Zmb5rZ14NZERHpmCn5AUCblqRBMOVgLSxrekjDucYEM7epGGAC8D+9y5vMbGKzUGazzWy9ma2vrtYPloh01MC+PcjL6qVNSwIEVw6VQHaj2wOAPUGOaW1ulbfpCe/yo187rwT+6pyrcc4dB5YAY2jCOTffOVfonCtMT08PYjVEpC1FBQE2vP8B+4+c9DuK+CyYclgH5JrZYDOLA2YCxU3GFAN3eEctjQMOe5uKWptbDMzyrs8CnveuLwNGmVkPb+f0NcCWdq6fiJyHqQUNm5aWbanyOYn4rc1ycM7VAXfT8D/tUmCRc67EzOaY2Rxv2BKgHCgDngS+1Npcb85DwGQz2wFM9m7jnPsA+AkNxfI28KZz7sWOr6qItGVoRjJD0pNYpv0OES8mmEHOuSU0FEDjZU80uu6AucHO9ZYfAJrtS/Due5qGw1lFpAuZGUX5AX7xajmHjteS2iPO70jiE31DWkTOUlQQ4Ey9Y0Xp/rYHS7elchCRs4zsn0K/lAQd0hrhVA4ichYzY0pBgFd3VHPsVJ3fccQnKgcRaaYoP0BtXT2rtmnTUqRSOYhIM4U5fUhLjtOmpQimchCRZqKjjMl5AVZt3c/J0zq1WSRSOYhIi4oKAhyrPcPqshq/o4gPVA4i0qIrh/SlZ0KMNi1FKJWDiLQoLiaKSSMyWV5aRX29fj400qgcROScpuQHOHT8NOU1x/yOIl1M5SAi53TNsHQSYqPYtPuw31Gki6kcROScEuOiuXZYBpt2H8Zpy1JEUTmISKuKCgJ8eKKOXfr50IiichCRVl03PIPoKLRpKcKoHESkVSmJsQzN7OltWtK2pUihchCRNo3sn8LBo7WsKT/gdxTpIioHEWnT6IGp9EmO5YHFm3U6jQihchCRNsVFR3HLmAGU1xzjZy+X+R1HuoDKQUSCMiyzJ7eMGcATf32X0r1H/I4jF5jKQUSC9sANI0hJjGXesxs5o1NqdGsqBxEJWu+kOL51Yz7vVB7m16t3+h1HLiCVg4icl0+OymLi8Ax+/JftVOiLcd2WykFEzouZ8b0ZBUQZ3L94k7770E2pHETkvPVLTeTeqcP5244anntzt99x5AJQOYhIu3zmikFcNqg333txCzVHT/kdRzqZykFE2iUqynjo5pEcP3WG7/7XFr/jSCdTOYhIu+Vm9mTudUMpfmcPL2+t8juOdCKVg4h0yBevvYhhmck8sHgzR0/V+R1HOonKQUQ6JC4min+7eRR7j5zk35du9TuOdBKVg4h02GWDejPryhyeWvs+G94/6Hcc6QQqBxHpFF+bcjH9UhK599lNnKrTmVvDncpBRDpFcnwMD95UQNn+o/x81bt+x5EOUjmISKe57uIMpl/aj5+/Usb2qg/9jiMdoHIQkU71zWl5JMfHcK/O3BrWgioHMysys21mVmZm81q438zsEe/+jWY2pq25ZtbHzJab2Q7vsneTxxxoZkfN7GsdWUER6Vp9k+P55ifzeGvXIZ5e+77fcaSd2iwHM4sGHgOmAnnA7WaW12TYVCDX+5sNPB7E3HnASudcLrDSu93YT4GX2rFOIuKzGZf25+ph6fxo6VZ2Hzrhdxxph2A+OYwFypxz5c65WmAhML3JmOnAU67BWiDVzLLamDsdWOBdXwDM+OjBzGwGUA6UtGutRMRXZsb3ZxTggAd05tawFEw59AcqGt2u9JYFM6a1uZnOub0A3mUGgJklAfcC32ktlJnNNrP1Zra+uro6iNUQka6U3acHX/vExazaVk3xO3v8jiPnKZhysBaWNX0bcK4xwcxt6jvAT51zR1sb5Jyb75wrdM4Vpqent/GQIuKHWVflcEl2Kt/5ry0cPFbrdxw5D8GUQyWQ3ej2AKDp24BzjWltbpW36Qnvcr+3/ArgR2b2HvAV4H4zuzuInCISYqKjjB/eMpIjJ07z4Is6c2s4CaYc1gG5ZjbYzOKAmUBxkzHFwB3eUUvjgMPepqLW5hYDs7zrs4DnAZxzH3PO5TjncoCHgR84537W7jUUEV8ND/Tii9dexHNv7uav27UJOFy0WQ7OuTrgbmAZUAoscs6VmNkcM5vjDVtCww7kMuBJ4EutzfXmPARMNrMdwGTvtoh0Q3d/fCgXpSdx/3ObOKYzt4aFmGAGOeeW0FAAjZc90ei6A+YGO9dbfgCY2MbzfjuYfCIS2uJjonnollHc+sQafrJ8O9+Y1vRoeAk1+oa0iHSJy3P68JlxA/n16p28XXHI7zjSBpWDiHSZe4uGk9EzgXnPbqS2rt7vONIKlYOIdJmeCbF8b0YBW/d9yPxXdebWUKZyEJEuNTkvkxtGZfHIyjLK9rf6dSbxkcpBRLrctz+ZT2JcNPc/t4l6nbk1JKkcRKTLpfeM519vGMEb7x3k92/s8juOtEDlICK+uPWyAYwf2peHXtrKvsMn/Y4jTagcRMQXZsYPbhpJXX09D/x5s87cGmJUDiLim0F9k/h/k4exorSKlzbv8zuONKJyEBFf3Tl+MCP7p/DN50s4dFxnbg0VKgcR8VVMdBQP3TKSD47X8oMlpX7HEY/KQUR8l98vhdlXD2HR+kpWl9X4HUdQOYhIiPjyxFxy+vbg/sWbOFF7xu84EU/lICIhISE2mn+7eRTvHzjOwyu2+x0n4qkcRCRkXHlRX24fm82Tfytn8+7DfseJaCoHEQkp86aOoG9yPF9/ZiOnz+jMrX5ROYhISElJjOV70/PZsvcIv3ptp99xIpbKQURCTlFBFkX5AX66fDs7a475HSciqRxEJCR9Z3o+cTFR3PfcRp1awwcqBxEJSZm9Erj/+hGsLT/IovUVfseJOCoHEQlZtxVmc8XgPnz/xVL2H9GZW7uSykFEQlZUlPHQLaM4WVfPt4pL/I4TUVQOIhLSBqcl8ZVJuby0eR+b9N2HLqNyEJGQ94WPDWFEVi8Wv7WbE6d1ao2uoHIQkZAXGx3FD28ZydGTdby4ca/fcSKCykFEwsKoAalcMyyd18sP8vVn3uGkPkFcUCoHEQkbU0dmMSkvg0XrK7nl8b9TcfC435G6LZWDiISNKIMp+QF+eUchuw4eZ9qjr7Fq236/Y3VLKgcRCTuT8jJ54Z4J9EtN5M7frOPhFdupr9e3qDuTykFEwtKgvkk898WruGl0fx5esYM7F6zTb1B3IpWDiIStxLhofnzrJTw4o4DVZTVMe/Q1/Q5EJ1E5iEhYMzM+M24Qi+66kjP1jpsf/7vOxdQJVA4i0i2MHtibF+6ZQOGg3nz9mY3c99xGHe7aAUGVg5kVmdk2Myszs3kt3G9m9oh3/0YzG9PWXDPrY2bLzWyHd9nbWz7ZzDaY2Sbv8uOdsaIi0v31TY7nqTvH8sVrL+IPb1TwqV+sofIDHe7aHm2Wg5lFA48BU4E84HYzy2sybCqQ6/3NBh4PYu48YKVzLhdY6d0GqAE+6ZwbCcwCftvutRORiBMTHcW9RcOZ/9nL2Fl9jGmPvsar26v9jhV2gvnkMBYoc86VO+dqgYXA9CZjpgNPuQZrgVQzy2pj7nRggXd9ATADwDn3lnNuj7e8BEgws/j2rZ6IRKpP5AcovmcCmT0TmPXrN3h05Q4d7noegimH/kDjvTuV3rJgxrQ2N9M5txfAu8xo4blvAd5yzp1qeoeZzTaz9Wa2vrpa7wpEpLnBaUksnnsVN17Sjx8v384XnlrP4ROn/Y4VFoIpB2thWdP6PdeYYOa2/KRm+cAPgbtaut85N985V+icK0xPTw/mIUUkAvWIi+Hh2y7lOzfm89ft1dz4s9fYsueI37FCXjDlUAlkN7o9ANgT5JjW5lZ5m57wLv/xHXgzGwAsBu5wzr0bREYRkXMyM2ZdlcMf7xrHydNnuPnx1Ty7odLvWCEtmHJYB+Sa2WAziwNmAsVNxhQDd3hHLY0DDnubilqbW0zDDme8y+cBzCwVeBG4zzm3uv2rJiJytssG9eGFez7GpdmpfPVP7/DAnzdxqk6Hu7akzXJwztUBdwPLgFJgkXOuxMzmmNkcb9gSoBwoA54EvtTaXG/OQ8BkM9sBTPZu440fCnzDzN72/lraHyEict7Se8bz9Oev4K6rh/D02l3c9ou17Dl0wu9YIScmmEHOuSU0FEDjZU80uu6AucHO9ZYfACa2sPxB4MFgcomItEdMdBT3XT+CS7NT+ZdnNjLt0dd49PbRjB+a5ne0kKFvSItIxJo6Movn7x5P36Q4Pvur1/n5K2U0vNcVlYOIRLSL0pP589zxXD8yix8t3cZdv93AkZM63FXlICIRLyk+hkdvH803p+Xx8tb9TP/Zarbui+zDXVUOIiI0HO5654TB/GH2OI6equOmx/7O82/v9juWb1QOIiKNXJ7ThxfvmcDI/il8eeHbfLu4hNq6er9jdTmVg4hIExm9EvjdF67g8xMG85u/v8fM+WvYd/ik37G6lMpBRKQFsdFRfGNaHj/79Gi27vuQaY/+jTXvHvA7VpdROYiItGLaqH48P3c8KYmxfOZXrzP/1cg4o4/KQUSkDbmZPXn+7glMyc/kB0u28tSa97v9r8wF9Q1pEZFIlxwfw2OfHsMv/7aTNaXv8d6yY2RnfcCnCrMZ1DfJ73idTuUgIhIkM+MLVw9hdEY0L2/dz+OvvMtjq97lyiF9mTk2myn5ARJio/2O2SlUDiIi5yknLYk7Jwzms9cV8Mz6ShZtqODLC98mJTGWm0b351OF2eT16+V3zA5ROYiItFNWSiL3TMxl7nVDWVN+gIXrKvj967v4zd/fY9SAFG67PJsbL+lHz4RYv6OeN5WDiEgHRUUZ44emMX5oGh8cq+XPb+9m4RsV/OvizTz4QinXj8xi5thsCgf1xqylH8gMPSoHEZFO1Dspjs+NH8z/uiqHdyoP88d1uyh+ew/PvlnJkPQkZl6ezc1jBpCWHO931FapHERELgAz49LsVC7NTuWBG/J4cdNe/riugh8s2cqPlm5j0ohMbhubzdW56URHhd6nCZWDiMgFlhQfw6cKs/lUYTZl+z/kj+sqePbN3Swt2UdWSgK3XjaAWwuzye7Tw++o/6ByEBHpQkMzevKvN+TxL1OGs6K0ioXrKnh0VRmPripjwtA0brs8m8l5mcTH+HtIrMpBRMQHcTFRXD8yi+tHZrH70An+tL6CP62v5O7fv0XvHrHcNHoAt12ezcWBnr7kUzmIiPisf2oiX5k0jHs+nstrZTUsWlfBb9e+x3+u3snogancVpjNtEv6kRzfdf/LVjmIiISI6CjjmmHpXDMsnQNHT7H4rd0sXFfBvOc28d0XtvDJUf24bWw2o7NTL/ghsSoHEZEQ1Dc5nv/9sSF8fsJg3tx1qOGQ2Hf28Mf1FeRmJDfsmxiSRFL8hdk3oXIQEQlhZsZlg3pz2aDefGNaHi9sbDgk9sEXS1k7OJHxQ9P43MS0Tn9elYOISJjomRDL7WMHcvvYgWzdd4TVm3fSOynugjyXykFEJAwND/QiLab/BXt8/diPiIg0o3IQEZFmVA4iItKMykFERJpROYiISDMqBxERaUblICIizagcRESkGXPO+Z2hw8ysGnjf7xwdlAbU+B0ihOj1OJtej3/Sa3G2jrweg5xz6S3d0S3KoTsws/XOuUK/c4QKvR5n0+vxT3otznahXg9tVhIRkWZUDiIi0ozKIXTM9ztAiNHrcTa9Hv+k1+JsF+T10D4HERFpRp8cRESkGZWDiIg0o3LwmZllm9kqMys1sxIz+7LfmfxmZtFm9paZveB3Fr+ZWaqZPWNmW73/Rq70O5OfzOz/ev9ONpvZH8wswe9MXcnM/tPM9pvZ5kbL+pjZcjPb4V327oznUjn4rw74qnNuBDAOmGtmeT5n8tuXgVK/Q4SI/w8sdc4NBy4hgl8XM+sP/B+g0DlXAEQDM/1N1eV+AxQ1WTYPWOmcywVWerc7TOXgM+fcXufcm971D2n4x3/hfvsvxJnZAOAG4Jd+Z/GbmfUCrgZ+BeCcq3XOHfI1lP9igEQziwF6AHt8ztOlnHOvAgebLJ4OLPCuLwBmdMZzqRxCiJnlAKOB132O4qeHga8D9T7nCAVDgGrg195mtl+aWZLfofzinNsN/AewC9gLHHbO/cXfVCEh0zm3FxrebAIZnfGgKocQYWbJwLPAV5xzR/zO4wczmwbsd85t8DtLiIgBxgCPO+dGA8fopE0G4cjblj4dGAz0A5LM7DP+puq+VA4hwMxiaSiG3znnnvM7j4/GAzea2XvAQuDjZva0v5F8VQlUOuc++iT5DA1lEakmATudc9XOudPAc8BVPmcKBVVmlgXgXe7vjAdVOfjMzIyGbcqlzrmf+J3HT865+5xzA5xzOTTsaHzZORex7wydc/uACjO72Fs0EdjiYyS/7QLGmVkP79/NRCJ4B30jxcAs7/os4PnOeNCYzngQ6ZDxwGeBTWb2trfsfufcEv8iSQi5B/idmcUB5cDnfM7jG+fc62b2DPAmDUf5vUWEnUrDzP4AXAukmVkl8C3gIWCRmX2ehgK9tVOeS6fPEBGRprRZSUREmlE5iIhIMyoHERFpRuUgIiLNqBxERKQZlYOIiDSjchARkWb+G+V90zTQ9MMOAAAAAElFTkSuQmCC\n", | ||
"text/plain": [ | ||
"<Figure size 432x288 with 1 Axes>" | ||
] | ||
}, | ||
"metadata": { | ||
"needs_background": "light" | ||
}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"x = torch.nn.Parameter(torch.randn(4, 4))\n", | ||
"optimizer = optim.Adam([x], lr=1e-3)\n", | ||
"scheduler = MultiStepLR(optimizer, milestones=[6, 7, 8, 9], gamma=0.5)\n", | ||
"\n", | ||
"def get_lr(optimizer):\n", | ||
" for param_group in optimizer.param_groups:\n", | ||
" return param_group['lr']\n", | ||
" \n", | ||
"lrs = []\n", | ||
"for i in range(10):\n", | ||
" lrs.append(get_lr(optimizer))\n", | ||
" scheduler.step()\n", | ||
"\n", | ||
"plt.plot(range(1, 11), lrs)\n", | ||
"for x in range(1, 11):\n", | ||
" plt.axvline(x, c='0.8', alpha=0.5)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 27, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([19, 11, 0, 15, 18, 10, 12, 14, 17, 6, 13, 1, 4, 9, 8, 5, 2,\n", | ||
" 3, 7, 16])" | ||
] | ||
}, | ||
"execution_count": 27, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"import numpy as np\n", | ||
"np.random.permutation(20)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "dohoon", | ||
"language": "python", | ||
"name": "dohoon" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from spliceai_pytorch import SpliceAI_80nt, SpliceAI_400nt, SpliceAI_2k, SpliceAI_10k |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
from torch.utils.data import TensorDataset, DataLoader | ||
|
||
if __name__ == '__main__': | ||
import torch | ||
import h5py | ||
|
||
h5f = h5py.File('../spliceai_train_code/Canonical/dataset_train_all.h5') | ||
idx = 1 | ||
|
||
X, Y = h5f[f'X{idx}'][:], h5f[f'Y{idx}'][0, ...] | ||
ds = TensorDataset(torch.from_numpy(X), torch.from_numpy(Y)) | ||
loader = DataLoader(ds, batch_size=32, shuffle=True, num_workers=8) | ||
|
||
for batch in loader: | ||
print(batch[0].shape, batch[1].shape) | ||
break |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.