Skip to content

dinhanit/YoloOnnx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Yolo Onnx

Overview

image This is project about detection using Yolov8.onnx

Table of Contents

Demo

It can detect object from image or link of image With 5 classes: {0: "bicycle", 1: "bus", 2: "car", 3: "motorbike", 4: "person"}

Datasets

Features

  • Detects and identifies objects in images or links.
  • Supports real-time object detection.
  • Easily configurable and extensible for various use cases.

Requirements

Specify the software and hardware requirements needed to run the project. For example:

  • Pytorch
  • Python 3.x
  • GPU with CUDA support

Installation

Provide detailed installation instructions. If possible, create a virtual environment for your project. Here's a general installation process:

  1. Clone the repository:

    git clone https://github.com/dinhanit/YoloOnnx.git
    
  2. Set up

    pip install -r requirements.txt
  3. Demo on fastapi

    • Setup docker
      chmod +x install.sh
      ./install.sh
    • Open browser
      http://localhost:8501/docs
      
  4. Demo with streamlit

    cd YoloOnnx/Web/
    streamlit run st.pt

Train on custom data

  1. Model properties

    image

  2. Set up

    ├───Web
    │   └───weight
    └───Yolo
        └───datasets
            ├───test
            │   ├───images
            │   └───labels
            ├───train
            │   ├───images
            │   └───labels
            └───valid
                ├───images
                └───labels
    
  3. Train

    cd Yolo
    python train.py
    
  4. Convert to onnx model

    python convert_onnx.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published