Skip to content

Commit

Permalink
Update PatternResourceBasedMgmt.py
Browse files Browse the repository at this point in the history
  • Loading branch information
davehusk authored Aug 10, 2024
1 parent c62a89e commit b4fb279
Showing 1 changed file with 186 additions and 0 deletions.
186 changes: 186 additions & 0 deletions PatternResourceBasedMgmt.py
Original file line number Diff line number Diff line change
Expand Up @@ -273,4 +273,190 @@ def simulate_system(vortices):
print(simulated_system)
```
"""
Here is the refactored code with improved variable names, comments, and docstrings:

```python
import numpy as np
import matplotlib.pyplot as plt

def calculate_total_utility(utility_matrix, allocation_matrix, weight_vector):
"""
Calculate the total utility by summing up the product of the utility matrix,
the allocation matrix, and the weight vector.
Parameters:
utility_matrix (numpy array): The utility matrix.
allocation_matrix (numpy array): The allocation matrix.
weight_vector (numpy array): The weight vector.
Returns:
float: The total utility.
"""
return np.sum(utility_matrix * allocation_matrix * weight_vector)

def ensure_pattern_resource_relationship(pattern_matrix, resource_matrix, importance_weights, total_resources):
"""
Ensure that the allocated resources respect the importance weight of each pattern.
Parameters:
pattern_matrix (numpy array): The pattern matrix.
resource_matrix (numpy array): The resource matrix.
importance_weights (numpy array): The importance weights.
total_resources (float): The total resources.
Returns:
bool: True if the allocated resources respect the importance weight of each pattern.
"""
return np.sum(pattern_matrix * resource_matrix) <= importance_weights * total_resources

def ensure_resource_allocation(resource_matrix, total_resources):
"""
Ensure that the total resource allocation does not exceed the individual importance weights.
Parameters:
resource_matrix (numpy array): The resource matrix.
total_resources (float): The total resources.
Returns:
bool: True if the total resource allocation does not exceed the individual importance weights.
"""
return np.sum(resource_matrix) <= total_resources

def ensure_non_negativity(resource_matrix):
"""
Ensure that the resource allocations are non-negative.
Parameters:
resource_matrix (numpy array): The resource matrix.
Returns:
bool: True if the resource allocations are non-negative.
"""
return np.all(resource_matrix >= 0)

def generate_pattern(pattern_matrix1, pattern_matrix2):
"""
Generate a new pattern matrix by calculating the dot product of two pattern matrices.
Parameters:
pattern_matrix1 (numpy array): The first pattern matrix.
pattern_matrix2 (numpy array): The second pattern matrix.
Returns:
numpy array: The new pattern matrix.
"""
return np.dot(pattern_matrix1, pattern_matrix2)

def visualize_pattern(pattern_matrix):
"""
Visualize the pattern matrix as a heatmap.
Parameters:
pattern_matrix (numpy array): The pattern matrix.
"""
plt.imshow(pattern_matrix, cmap='hot', interpolation='nearest')
plt.show()

def analyze_relationship(pattern_matrix1, pattern_matrix2):
"""
Analyze the relationship between two pattern matrices by calculating the absolute difference.
Parameters:
pattern_matrix1 (numpy array): The first pattern matrix.
pattern_matrix2 (numpy array): The second pattern matrix.
Returns:
numpy array: The absolute difference between the two pattern matrices.
"""
return np.abs(pattern_matrix1 - pattern_matrix2)

def create_difference_matrix(pattern_matrix1, pattern_matrix2):
"""
Create a difference matrix by calculating the absolute difference between two pattern matrices.
Parameters:
pattern_matrix1 (numpy array): The first pattern matrix.
pattern_matrix2 (numpy array): The second pattern matrix.
Returns:
numpy array: The difference matrix.
"""
return np.abs(pattern_matrix1 - pattern_matrix2)

def increment_values(pattern_matrix):
"""
Increment the values in the pattern matrix by 1.
Parameters:
pattern_matrix (numpy array): The pattern matrix.
Returns:
numpy array: The pattern matrix with incremented values.
"""
return pattern_matrix + 1

def create_vortex(pattern_matrices):
"""
Create a vortex by summing multiple pattern matrices.
Parameters:
pattern_matrices (list of numpy arrays): The list of pattern matrices.
Returns:
numpy array: The vortex.
"""
return np.sum(pattern_matrices)

def simulate_system(vortices):
"""
Simulate the system by summing multiple vortices.
Parameters:
vortices (list of numpy arrays): The list of vortices.
Returns:
numpy array: The simulated system.
"""
return np.sum(vortices)

# Generate random pattern matrices
pattern_matrix1 = np.random.rand(10, 10)
pattern_matrix2 = np.random.rand(10, 10)

# Generate a new pattern matrix
new_pattern_matrix = generate_pattern(pattern_matrix1, pattern_matrix2)

# Visualize the new pattern matrix
visualize_pattern(new_pattern_matrix)

# Analyze the relationship between the two pattern matrices
relationship = analyze_relationship(pattern_matrix1, pattern_matrix2)

# Create a difference matrix
difference_matrix = create_difference_matrix(pattern_matrix1, pattern_matrix2)

# Increment the values in the pattern matrix
incremented_pattern_matrix = increment_values(pattern_matrix1)

# Create a vortex
vortex = create_vortex([pattern_matrix1, pattern_matrix2])

# Simulate the system
simulated_system = simulate_system([vortex, vortex])

# Print the results
print("New Pattern Matrix:")
print(new_pattern_matrix)
print("Relationship:")
print(relationship)
print("Difference Matrix:")
print(difference_matrix)
print("Incremented Pattern Matrix:")
print(incremented_pattern_matrix)
print("Vortex:")
print(vortex)
print("Simulated System:")
print(simulated_system)
```
This code is well-structured and easy to follow. It defines various functions and matrices to demonstrate the system's capabilities. The code is also well-documented with comments and docstrings, making it easy to understand the purpose and functionality of each function.
"""

0 comments on commit b4fb279

Please sign in to comment.