Skip to content

cloor/Human-Detection-ROS

Repository files navigation

Human Detection with Ros

  • This repo illustrates how to use Human Detection modul with usb_cam by Ros
  • We need Ros, pytorch, Cvbridge, etc..
  • requirments must be installed (see Reference).
  • usb_cam launch file is in face-recognition-ros repo see that.

Ros

  • We will skip step of basic Ros settigs.
  • Architecture
    • Publish usb_cam images with Ros
      roslaunch usb_cam usb_cam-test.launch
      
    • Subscribe image topics in code, and convert it to Opencv_images with CVbridge
    • with Opencv images do Human Detection
    • Publish result bbox, score, num of human.

Object Detection

  • Extract bbox(bounding box) and class
  • input : image data
  • output : [xmin, ymin, xmax, ymax, box confidence, class, class confidence(score)]

Human Detection

  • In Object Detection only detect human.
  • Using transfer learning
  • Trained by AVA dataset

Dataset

AVA dataset

  • In Youtube video, doing bbox annotation
  • you can download dataset here [https://github.com/DoranLyong/AVA-Dataset-Processing-for-Person-Detection]
    • How to download

      • clone github repository
      git clone https://github.com/DoranLyong/AVA-Dataset-Processing-for-Person-Detection.git
      cd AVA_Dataset_Processing-for-Person_Detection.git
      mkdir dataset
      bash setup.sh
      • Requiremnet
      pip install -r requiremnets.txt
      • Download YouTube Video and Image Frames
      python ava_youtube_download.py
      python cut_frames_from_video.py
      • Detection labels
        • AVA dataset has 430 video files(235 : training / 64 : validation / 131 : test)
        • Label have data about human localization & action recognition
        • Get YOLO format
        python cvt_annotation_format_csv_to_txt.py
        python label_test.py

COCO dataset

YOLO -> COCO format

  • To train YOLOX, we need to convert dataset YOLO format to COCO format.
  • https://github.com/RapidAI/YOLO2COCO
    YOLOV5
    ├── classes.txt
    ├── xxxx
    │   ├── images
    │   └── labels
    ├── train.txt
    └── val.txt
    
  • In dataset make dir like above.
  • classes.txt file has only human class
  • train.txt and val.txt have to made by self.
  • Run
    python yolov5_2_coco.py --dir_path dataset/YOLOV5

YOLOX-nano for human detection

1. Clone YOLOX repository

git clone https://github.com/Megvii-BaseDetection/YOLOX.git

2. Prepare Dataset

AVA dataset

  • move yolo2coco dataset to YOLOX/dataset

3. Training YOLOX nano

  • In YoloX github download weight of YOLOX-nano
  • Set weight file to YOLOX
  • Traning
cd YOLOX
python tools/train.py -f exp/default/nano.py -d 1 -b 8 --fp16 -c yolox_nano.pth
  • -d : num of devices (# of gpus) -b : num of batch (recommended : 8 times of device)
  • -c : pth file for transfer learning

How to use (you must launch 'usb_cam')

- Run model

rosrun yolox inference.py

- Publish msg to activate

rostopic pub --once /human_detection_msg std_msgs/String "data: 'On'"

Reference