Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

improved autofix strategy #148

Open
wants to merge 34 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 4 commits
Commits
Show all changes
34 commits
Select commit Hold shift + click to select a range
4615637
make pull request
aditya1503 Nov 16, 2023
2a7cf91
cleaned skeleton code
aditya1503 Nov 17, 2023
e7a3d07
cleanup
aditya1503 Nov 17, 2023
72fc919
add type hinting
aditya1503 Nov 17, 2023
d67bbc3
address PR comments
aditya1503 Nov 18, 2023
fc4bf7c
Update cleanlab_studio/internal/util.py
aditya1503 Nov 20, 2023
9f00909
linting + doc change
aditya1503 Nov 20, 2023
d2a3432
set ambiguous to 0
aditya1503 Nov 22, 2023
6bcec4c
things to port to backend
aditya1503 Nov 22, 2023
cc52ce2
Updated code for different strategies
sanjanag Dec 1, 2023
62efa2d
Fixed apply method
sanjanag Dec 1, 2023
e5c4872
Added test for computing rows for exclusion
sanjanag Dec 2, 2023
02294c8
Improved formatting
sanjanag Dec 2, 2023
1d644a0
Added tests for updating label issue rows based on threshold
sanjanag Dec 2, 2023
3ff2507
Fixed mypy issue
sanjanag Dec 2, 2023
7235b40
Added test for checking right rows are dropped for non near duplicate…
sanjanag Dec 2, 2023
1b99d60
Added test for checking right rows are dropped for near duplicate issues
sanjanag Dec 2, 2023
330aa44
Added get defaults method
sanjanag Dec 5, 2023
a19c88c
Return cleanset with original indices
sanjanag Dec 5, 2023
69ccda6
Merge branch 'main' into improve_autofix
sanjanag Dec 5, 2023
19143a3
Removed unimplemented test
sanjanag Dec 5, 2023
e5b97f5
removed unncessary merge change
sanjanag Dec 5, 2023
20a532c
Fixed tests
sanjanag Dec 5, 2023
3bbfc1c
Fixed mypy error
sanjanag Dec 5, 2023
b892e87
Added newline
sanjanag Dec 5, 2023
b54a0a7
Fixed formatting
sanjanag Dec 5, 2023
f870e04
added tests for dropped indices
sanjanag Dec 6, 2023
eb106d1
Added docs for user facing method
sanjanag Dec 6, 2023
a7acfa6
Black formatting
sanjanag Dec 6, 2023
1f0344d
Merge remote-tracking branch 'origin/main' into improve_autofix
aditya1503 Dec 13, 2023
692efe4
merge main
aditya1503 Dec 13, 2023
afbe4a9
add github change request
aditya1503 Dec 13, 2023
7b96faa
Update cleanlab_studio/studio/studio.py
aditya1503 Dec 18, 2023
b31674c
linting
aditya1503 Dec 18, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
132 changes: 130 additions & 2 deletions cleanlab_studio/internal/util.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
import pathlib
from typing import Any, Optional, TypeVar, Union
from typing import Any, Optional, TypeVar, Union, List
import math

import numpy as np
import copy

import pandas as pd

try:
Expand Down Expand Up @@ -63,3 +64,130 @@ def check_none(x: Any) -> bool:

def check_not_none(x: Any) -> bool:
return not check_none(x)


def _get_autofix_default_params() -> dict:
"""returns default percentage-wise params of autofix"""
return {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can choose more specific key names here

"ambiguous": 0.2,
"label_issue": 0.5,
"near_duplicate": 0.2,
"outlier": 0.5,
"confidence_threshold": 0.95,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

change to: "relabel_confidence_threshold"

}


def _get_autofix_defaults(cleanset_df: pd.DataFrame) -> dict:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

TODO: Studio team should move this function to backend of the app so it happens on server (eventually should be used in web app too)

"""
Generate default values for autofix parameters based on the size of the cleaned dataset.
"""
default_params = _get_autofix_default_params()
default_values = {}

for param_name, param_value in default_params.items():
if param_name != "confidence_threshold":
num_rows = cleanset_df[f"is_{param_name}"].sum()
default_values[f"drop_{param_name}"] = math.ceil(num_rows * param_value)
else:
default_values[f"drop_{param_name}"] = param_value
return default_values


def _get_top_fraction_ids(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

TODO: Studio team should move this function to backend of the app so it happens on server (eventually should be used in web app too)

cleanset_df: pd.DataFrame, name_col: str, num_rows: int, asc=True
) -> List[str]:
"""
Extracts the top specified number of rows based on a specified score column from a DataFrame.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This will only return the IDs of datapoints to drop for a given setting of the num_rows to drop during autofix


Parameters:
- cleanset_df (pd.DataFrame): The input DataFrame containing the cleanset.
- name_col (str): The name of the column indicating the category for which the top rows should be extracted.
- num_rows (int): The number of rows to be extracted.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In autofix, we can simply multiply the fraction of issues that are the cleanset defaults by the number of datapoints to get this.

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

right when we spoke originally, we wanted this call to be similar to the Studio web interface call, hence I rewrote it this way, it was floating percentage before.
the function _get_autofix_defaults does the multiplication by number of datapoints

- asc (bool, optional): If True, the rows are sorted in ascending order based on the score column; if False, in descending order.
Default is True.

Returns:
- list: A list of row indices representing the top specified number of rows based on the specified score column.
"""
bool_column_name = f"is_{name_col}"

# Construct a filter based on the 'label_issue' variable
filter_condition = cleanset_df[bool_column_name]

# Create a new DataFrame based on the filter
filtered_df = cleanset_df[filter_condition]
if name_col == "near_duplicate":
# Group by the 'near_duplicate_cluster_ID' column
df_n = filtered_df.sort_values(by="near_duplicate_score").reset_index(drop=True)
sorted_df = df_n.head(num_rows)
grouped_df = sorted_df.groupby("near_duplicate_cluster_id")

# Initialize an empty list to store the aggregated indices
aggregated_indices = []

# Iterate over each group
for group_name, group_df in grouped_df:
# Sort the group DataFrame by the 'near_duplicate_score' column in ascending order
sorted_group_df = group_df.sort_values(
by=f"{name_col}_score", ascending=asc
).reset_index(drop=True)

# Extract every other index and append to the aggregated indices list
selected_indices = sorted_group_df.loc[::2, "cleanlab_row_ID"]
aggregated_indices.extend(selected_indices)

return aggregated_indices
else:
# Construct the boolean column name with 'is_' prefix and 'label_issue_score' suffix
score_col_name = f"{name_col}_score"

# Sort the filtered DataFrame by the constructed boolean column in descending order
sorted_df = filtered_df.sort_values(by=score_col_name, ascending=asc)

# Extract the top specified number of rows and return the 'cleanlab_row_ID' column
top_rows_ids = sorted_df["cleanlab_row_ID"].head(num_rows)

return top_rows_ids


def _update_label_based_on_confidence(row, conf_threshold):
"""Update the label and is_issue based on confidence threshold if there is a label issue.

Args:
row (pd.Series): The row containing label information.
conf_threshold (float): The confidence threshold for updating the label.

Returns:
pd.Series: The updated row.
"""
if row["is_label_issue"] and row["suggested_label_confidence_score"] > conf_threshold:
row["is_issue"] = False
aditya1503 marked this conversation as resolved.
Show resolved Hide resolved
row["label"] = row["suggested_label"]
return row


def _apply_autofixed_cleanset_to_new_dataframe(
original_df: pd.DataFrame, cleanset_df: pd.DataFrame, parameters: pd.DataFrame
) -> pd.DataFrame:
"""Apply a cleanset to update original dataaset labels and remove top rows based on specified parameters."""
original_df_copy = copy.deepcopy(original_df)
original_columns = original_df_copy.columns
merged_df = pd.merge(original_df_copy, cleanset_df, left_index=True, right_on="cleanlab_row_ID")

merged_df = merged_df.apply(
lambda row: _update_label_based_on_confidence(
row, conf_threshold=parameters["drop_confidence_threshold"]
),
axis=1,
)

indices_to_drop = set()
for drop_name, top_num in parameters.items():
column_name = drop_name.replace("drop_", "")
if column_name == "confidence_threshold":
continue
top_percent_ids = _get_top_fraction_ids(merged_df, column_name, top_num, asc=False)
indices_to_drop.update(top_percent_ids)

merged_df = merged_df.drop(list(indices_to_drop), axis=0).reset_index(drop=True)
return merged_df[original_columns]
30 changes: 30 additions & 0 deletions cleanlab_studio/studio/studio.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,9 @@
init_dataset_source,
check_none,
check_not_none,
_get_autofix_default_params,
_get_autofix_defaults,
_apply_autofixed_cleanset_to_new_dataframe,
)
from cleanlab_studio.internal.settings import CleanlabSettings
from cleanlab_studio.internal.types import FieldSchemaDict
Expand Down Expand Up @@ -383,3 +386,30 @@ def poll_cleanset_status(self, cleanset_id: str, timeout: Optional[int] = None)

except (TimeoutError, CleansetError):
return False

def get_autofix_defaults(self, project_id: str) -> dict:
aditya1503 marked this conversation as resolved.
Show resolved Hide resolved
"""
Returns the default parameters for autofix.
Args:
project_id: ID of project.

Returns:
A dictionary containing number of rows to drop for each issue type.
"""
cleanset_id = api.get_latest_cleanset_id(self._api_key, project_id)
cleaned_df = self.download_cleanlab_columns(cleanset_id)
return _get_autofix_defaults(cleaned_df)

def autofix_dataset(self, project_id: str, params: dict = None) -> pd.DataFrame:
"""
Args:
project_id: ID of project.
params: Default parameter dictionary showing number of rows to drop for each issue type.
aditya1503 marked this conversation as resolved.
Show resolved Hide resolved
"""
cleanset_id = api.get_latest_cleanset_id(self._api_key, project_id)
cleanset_df = self.download_cleanlab_columns(cleanset_id)
original_df = get_original_df() # Studio team
if params is None:
params = _get_autofix_defaults(cleanset_df)
print("Using autofix parameters:", params)
return _apply_autofixed_cleanset_to_new_dataframe(original_df, cleanset_df, params)
Loading