GStreamer plugin that wraps Kaldi's SingleUtteranceNnet2Decoder. It requires iVector-adapted DNN acoustic models. The iVectors are adapted to the current audio stream automatically.
2015-01-09: Added language model rescoring functionality. In order to use it,
you have to specify two properties: lm-fst
and big-lm-const-arpa
. The lm-fst
property gives the location of the original LM (the one that was used fpr
compiling the HCLG.fst used during decodong). The big-lm-const-arpa
property
gives the location of the big LM used that is used to rescore the final lattices.
The big LM must be in the 'ConstArpaLm' format, use the Kaldi's
utils/build_const_arpa_lm.sh
script to produce it from the ARPA format.
2014-11-11: the plugin saves the adaptation state between silence-segmented utterances and between
multiple decoding sessions of the same plugin instance.
That is, if you start decoding a new stream, the adaptation state of the
previous stream is used (unless it's the first stream, in which case a global mean is used).
Use the adaptation-state
plugin property to get, and set the adaptation state. Use an empty string
with the set method to reset the adaptation state to default. This functionality requires
Kaldi revision 4582 or later.
The following works on Linux (I'm using Debian 'testing').
Compile Kaldi trunk, using the shared configuration: In Kaldi's 'src' directory:
./configure --shared
make depend
make
Install gstreamer-1.0:
sudo apt-get install gstreamer1.0-plugins-bad gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-pulseaudio gstreamer1.0-plugins-ugly gstreamer1.0-tools libgstreamer1.0-dev
Now we can compile this plugin. Change to src
of this project:
cd src
Compile, specifying Kaldi's root directory:
make depend
KALDI_ROOT=/path/of/kaldi-trunk make
This should result in 'libgstkaldionline2.so'.
Test if GStreamer can access the plugin:
GST_PLUGIN_PATH=. gst-inspect-1.0 kaldinnet2onlinedecoder
Command-line usage is demonstrated in demo/
.
Usage through GStreamer's Python bindings is demonstrated demo/gui-demo.py
and in the project
https://github.com/alumae/kaldi-gstreamer-server, in file kaldigstserver/decoder2.py.