Skip to content

bsteenwi/ContextualBandit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ContextualBandit

Contextual bandit implementation using Keras [Python]

This repository contains an implementation of an online contextual bandit. Given a set of samples with multiple features, the agent will try to find the best corresponding label.

Additional functions are implemented to get the feature importance weights, given the current sample set.

Dependencies

used packages:
Keras==2.1.6
numpy==1.14.2
pandas==0.22.0
tqdm==4.19.5

Example main file:

labels = [3, 1, 0, 2, 2, 0]
features = [[0, 0, 1], [1, 0, 1], [2, 0, 1], [3, 0, 1], [3, 0, 1], [2, 0, 1]]

p = EpsilonGreedyPolicy(epsilon=0.1)
env = Environment(features, labels, p)
env.experiment(total_rounds=10000)

Contact

You can contact me at bram.steenwinckel@ugent.be for any questions, proposals or if you wish to contribute.

About

Contextual bandit implementation using Keras

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages