Skip to content

Framework for the reproducible processing of neuroimaging data with deep learning methods

License

Notifications You must be signed in to change notification settings

aramis-lab/clinicadl

Repository files navigation

ClinicaDL Logo
ClinicaDL

Framework for the reproducible processing of neuroimaging data with deep learning methods

Build Status PyPI version Documentation Status Downloads

Documentation | Tutorial | Forum

About the project

This repository hosts ClinicaDL, the deep learning extension of Clinica, a Python library to process neuroimaging data in BIDS format.

Disclaimer: this software is under development. Some features can change between different releases and/or commits.

To access the full documentation of the project, follow the link https://clinicadl.readthedocs.io/. If you find a problem when using it or if you want to provide us feedback, please open an issue or write on the forum.

Getting started

ClinicaDL currently supports macOS and Linux.

We recommend to use conda or virtualenv for the installation of ClinicaDL as it guarantees the correct management of libraries depending on common packages:

conda create --name ClinicaDL python=3.10
conda activate ClinicaDL
pip install clinicadl

Tutorial

Visit our hands-on tutorial web site to start using ClinicaDL directly in a Google Colab instance!

Related Repositories

Citing us

  • Thibeau-Sutre, E., Díaz, M., Hassanaly, R., Routier, A., Dormont, D., Colliot, O., Burgos, N.: ‘ClinicaDL: an open-source deep learning software for reproducible neuroimaging processing‘, 2021. hal-03351976
  • Routier, A., Burgos, N., Díaz, M., Bacci, M., Bottani, S., El-Rifai O., Fontanella, S., Gori, P., Guillon, J., Guyot, A., Hassanaly, R., Jacquemont, T., Lu, P., Marcoux, A., Moreau, T., Samper-González, J., Teichmann, M., Thibeau-Sutre, E., Vaillant G., Wen, J., Wild, A., Habert, M.-O., Durrleman, S., and Colliot, O.: ‘Clinica: An Open Source Software Platform for Reproducible Clinical Neuroscience Studies’, 2021. doi:10.3389/fninf.2021.689675 Open Access version