Parameters:
df: Pandas DataFrame, Default = None
Dataset to join with.
attr: String, Default = None
Attribute to aggregate on.
Returns:
agg_df: Pandas DataFrame, Default = None
The aggregated dataframe with the aggregated values mean, max, min, median, count, sum for each unique attribute.
Example:
Parameters:
df: Pandas DataFrame, Default = None
Dataset to join with.
attr: String, Default = None
Attribute to aggregate on.
Returns:
agg_df: Pandas DataFrame, Default = None
The aggregated dataframe with the aggregated values mean, max, min, median, count, sum for each unique attribute.
Example:
Parameters:
df: Pandas DataFrame, Default = None
Dataset to check
Returns:
missing_df: Pandas DataFrame, Default = None
Dataframe with two columns, number of missing data in each feature and percentage missing per feature.
Example:
To install, download the featureit.py file, place it in your project folder and import the functions to your python project. The Pandas library needs to be installed.
import featureit as fi
agg_df = fi.aggregate_numerical_features(df, attr)