Skip to content

Commit

Permalink
Add goal for loc-scale transformation
Browse files Browse the repository at this point in the history
  • Loading branch information
rlouf committed Jun 16, 2022
1 parent 87d6f75 commit ff705b8
Show file tree
Hide file tree
Showing 2 changed files with 120 additions and 0 deletions.
75 changes: 75 additions & 0 deletions aemcmc/transforms.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
import aesara.tensor as at
from etuples import etuple, etuplize
from kanren import eq, lall
from kanren.facts import Relation, fact
from unification import var

location_scale_family = Relation("location-scale-family")
fact(location_scale_family, at.random.cauchy)
fact(location_scale_family, at.random.gumbel)
fact(location_scale_family, at.random.laplace)
fact(location_scale_family, at.random.logistic)
fact(location_scale_family, at.random.normal)


def location_scale_transform(in_expr, out_expr):
r"""Produce a goal that represents the action of lifting and sinking
the scale and location parameters of distributions in the location-scale
family.
For instance
.. math::
\begin{equation*}
Y \sim \operatorname{Normal}(\mu, \sigma)
\end{equation*}
can also be written
.. math::
\begin{align*}
\epsilon &\sim \operatorname{Normal}(0, 1)\\
Y = \mu + \sigma\,\epsilon
\end{align*}
Parameters
----------
in_expr
An expression that represents a random variable whose distribution belongs
to the location-scale family.
out_expr
An expression for the non-centered representation of this random variable.
"""

# Centered representation
rng_lv, size_lv, type_idx_lv = var(), var(), var()
mu_lv, sd_lv = var(), var()
distribution_lv = var()
centered_et = etuple(distribution_lv, rng_lv, size_lv, type_idx_lv, mu_lv, sd_lv)

# Non-centered representation
noncentered_et = etuple(
etuplize(at.add),
mu_lv,
etuple(
etuplize(at.mul),
sd_lv,
etuple(
distribution_lv,
0,
1,
rng=rng_lv,
size=size_lv,
dtype=type_idx_lv,
),
),
)

return lall(
eq(in_expr, centered_et),
eq(out_expr, noncentered_et),
location_scale_family(distribution_lv),
)
45 changes: 45 additions & 0 deletions tests/test_transforms.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
import aesara.tensor as at
from aesara.graph.fg import FunctionGraph
from aesara.graph.kanren import KanrenRelationSub

from aemcmc.transforms import location_scale_transform


def test_normal_scale_loc_transform_lift():
""" "Lift the loc and scale parameters"""

srng = at.random.RandomStream(0)
mu_rv = srng.halfnormal(1.0)
sigma_rv = srng.halfcauchy(1)
Y_rv = srng.normal(mu_rv, sigma_rv)

fgraph = FunctionGraph(outputs=[Y_rv], clone=False)
res = KanrenRelationSub(location_scale_transform).transform(
fgraph, fgraph.outputs[0].owner
)[0]

# Make sure that Y_rv gets replaced with an addition
assert res.owner.op == at.add
lhs = res.owner.inputs[0]
assert isinstance(lhs.owner.op, type(at.random.halfnormal))
rhs = res.owner.inputs[1]
assert rhs.owner.op == at.mul
assert isinstance(rhs.owner.inputs[0].owner.op, type(at.random.halfcauchy))
assert isinstance(rhs.owner.inputs[1].owner.op, type(at.random.normal))


def test_normal_scale_loc_transform_sink():
"""Sink the loc and scale parameters."""

srng = at.random.RandomStream(0)
mu_rv = srng.halfnormal(1.0)
sigma_rv = srng.halfcauchy(1)
std_normal_rv = srng.normal(0, 1)
Y_at = mu_rv + sigma_rv * std_normal_rv

fgraph = FunctionGraph(outputs=[Y_at], clone=False)
res = KanrenRelationSub(lambda x, y: location_scale_transform(y, x)).transform(
fgraph, fgraph.outputs[0].owner
)[0]

assert isinstance(res.owner.op, type(at.random.normal))

0 comments on commit ff705b8

Please sign in to comment.