Skip to content

Commit

Permalink
Add goal for normal loc-scale transformation
Browse files Browse the repository at this point in the history
  • Loading branch information
rlouf committed Apr 24, 2022
1 parent 0a8cc00 commit 0bd0d22
Show file tree
Hide file tree
Showing 2 changed files with 78 additions and 0 deletions.
41 changes: 41 additions & 0 deletions aemcmc/transforms.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
import aesara.tensor as at
from etuples import etuple, etuplize
from kanren import eq, lall
from kanren.facts import Relation, fact
from unification import var

loc_scale_family = Relation("loc-scale")
fact(loc_scale_family, at.random.normal)

def normal_scale_loc_goal(in_expr, out_expr):
"""Create a relation to lift and sink scale and location parameters of distributions."""

# Centered representation
rng_lv, size_lv, type_idx_lv = var(), var(), var()
mu_lv, sd_lv = var(), var()
normal_centered_et = etuple(
etuplize(at.random.normal), rng_lv, size_lv, type_idx_lv, mu_lv, sd_lv
)

# Non-centered representation
normal_nc_et = etuple(
etuplize(at.add),
mu_lv,
etuple(
etuplize(at.mul),
sd_lv,
etuple(
etuplize(at.random.normal),
0.0,
1.0,
rng=rng_lv,
size=size_lv,
dtype=type_idx_lv,
),
),
)

return lall(
eq(in_expr, normal_centered_et),
eq(out_expr, normal_nc_et),
)
37 changes: 37 additions & 0 deletions tests/test_transforms.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
from functools import partial

import aesara.tensor as at
from aesara.graph.unify import eval_if_etuple
from kanren import run
from kanren.graph import reduceo, walko
from unification import var

from aemcmc.transforms import normal_scale_loc_goal


def test_normal_scale_loc_transform():
""""""

srng = at.random.RandomStream(0)
mu_a_rv = srng.normal(0, 1)
sigma_a_rv = srng.halfcauchy(1)
a_rv = srng.normal(mu_a_rv, sigma_a_rv, size=(10,))

mu_b_rv = srng.normal(0, 1)
sigma_b_rv = srng.halfcauchy(1)
b_rv = srng.normal(mu_b_rv, sigma_b_rv, size=(10))

mu = a_rv + b_rv
sigma_rv = srng.halfcauchy(5.0)
Y_rv = srng.normal(mu, sigma_rv)

q_lv = var()
(expr_graph,) = run(
1, q_lv, walko(partial(reduceo, normal_scale_loc_goal), Y_rv, q_lv)
)
Y_nc_rv = eval_if_etuple(expr_graph)

# Make sure that Y_rv gets replaced with an addition
assert Y_nc_rv.owner.op == at.add
rhs = Y_nc_rv.owner.inputs[1].owner.inputs[0]
assert rhs.owner.op == at.mul

0 comments on commit 0bd0d22

Please sign in to comment.