Compute q angles of the external rays that land the principal Misiurewicz point of the p/q wake of the Mandelbrot set for the complex quadratic map
- paper by Dusa McDuff and Melkana Brakalova
- wikibooks
- Geometry of the Antennas in the Mandelbrot Set by R L Devaney and M Moreno-Rocha, April 11, 2000
#notation
Extarnal angle as an infinite binary fraction:
Infinite periodic binary fraction
Infinite preperic binary fraction
- input = p/q ( angle of the wake as a ratio of decimal integers in the lowest form)
- check if p/q is in the lowest form ( = irreducible)
- compute 2 periodic angles of the wake ( period = length of the periodic pattern = q):
- 0.(s_)
- 0.(s+)
- compute q preperiodic angles of rays that land on the principal Misiurewicz point of the wake p/q from 2 previous angles
- the lowest angle of Misiureiwcz point is 0.s-(s+)
- the highest angle of Misiureiwcz point is 0.s+(s-)
- the rest (q-2) angles are computed using binary shift of b digits
- compute q-1 angles of the tips ( ends of arms)
- compute sequence of angles ending at the Feigenbaum point
- compute c values of :
- root point
- principal Misiurewicz point
- root point of main satellite of the arm
Symbolic names of the angles:
- compute b = denominator of a/b, which is a smaller Farey parent of p/q. (it is needed for computing Misiurewicz angles)
- convert (pre)periodic binary string to decimal fraction:
- i.c c odde to check fraction irreducebility
- b.hs Haskell code by Claude Heiland-Allen which does all !!!!
- w.c
- p.cpp
- f.c - Farey parents using int in c
- a list of Farye parents up to 100
- ft.c - c program for creating a list of values {p,q,b} for testing shift map
- fp30.txt - result of ft.c, it will be used by another program t.c
- t.c - c program for computing angles of the external rays of Misiurewicz points, only in symbolic form
- mis30.txt - result of t.c = angles of the external rays of Misiurewicz points, only in symbolic form
- s.c - binare left shift map in c
- c program for computing q angles rays landing on the principal Misurewicz point of the wake p/q
- prep.c - old code
- principal.c - new code
- 34_89.txt result for 34/89
Computed using i.c program
n/d = 1/2
n/d = 1/3
n/d = 2/3
n/d = 1/4
n/d = 3/4
n/d = 1/5
n/d = 2/5
n/d = 3/5
n/d = 4/5
n/d = 1/6
n/d = 5/6
n/d = 1/7
n/d = 2/7
n/d = 3/7
n/d = 4/7
n/d = 5/7
n/d = 6/7
n/d = 1/8
n/d = 3/8
n/d = 5/8
n/d = 7/8
n/d = 1/9
n/d = 2/9
n/d = 4/9
n/d = 5/9
n/d = 7/9
n/d = 8/9
n/d = 1/10
n/d = 3/10
n/d = 7/10
n/d = 9/10
n/d = 1/11
n/d = 2/11
n/d = 3/11
n/d = 4/11
n/d = 5/11
n/d = 6/11
n/d = 7/11
n/d = 8/11
n/d = 9/11
n/d = 10/11
n/d = 1/12
n/d = 5/12
n/d = 7/12
n/d = 11/12
n/d = 1/13
n/d = 2/13
n/d = 3/13
n/d = 4/13
n/d = 5/13
n/d = 6/13
n/d = 7/13
n/d = 8/13
n/d = 9/13
n/d = 10/13
n/d = 11/13
n/d = 12/13
n/d = 1/14
n/d = 3/14
n/d = 5/14
n/d = 9/14
n/d = 11/14
n/d = 13/14
n/d = 1/15
n/d = 2/15
n/d = 4/15
n/d = 7/15
n/d = 8/15
n/d = 11/15
n/d = 13/15
n/d = 14/15
n/d = 1/16
n/d = 3/16
n/d = 5/16
n/d = 7/16
n/d = 9/16
n/d = 11/16
n/d = 13/16
n/d = 15/16
n/d = 1/17
n/d = 2/17
n/d = 3/17
n/d = 4/17
n/d = 5/17
n/d = 6/17
n/d = 7/17
n/d = 8/17
n/d = 9/17
n/d = 10/17
n/d = 11/17
n/d = 12/17
n/d = 13/17
n/d = 14/17
n/d = 15/17
n/d = 16/17
Result of w.c
uiIADenominator = 89
Using MPFR-3.1.2-p3 with GMP-5.1.3 with precision = 200 bits
internal angle = 34/89
first external angle :
period = denominator of internal angle = 89
external angle as a decimal fraction = 179622968672387565806504265/618970019642690137449562111 = 179622968672387565806504265 /( 2^89 - 1)
External Angle as a floating point decimal number = 2.9019655713870868535821260055542440298749779423213948304299730531995503353103626302473331181359966368582651105245850405837027542373052381532777325121338632071561064451614697645709384232759475708007812e-1
external angle as a binary rational (string) : 1001010010010100101001001010010010100101001001010010100100101001001010010100100101001001/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
external angle as a binary floating number in exponential form =0.10010100100101001010010010100100101001010010010100101001001010010010100101001001010010010100101001001010010100100101001001010010100100101001010010010100100101001010010010100100101001010010010100101001*2^-1
external angle as a binary floating number in periodic form =0.(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001)
Suppose a/b and c/d
0< a/b < c/d < 1
are the Farey parents of p/q
find a/b and c/d
farey_addition( a/b ; c/d ) = (a+c)/(b+d) = p/q
so
p = a+c
q = b+d
find a,b,c,d such:
p = a+c
q = b+d
0< a/b < p/q < c/d < 1
if one knows one parent then the second parent can be found by undoing the Farey addition
a = p-c
b = q-d
1/4294967295 > INT_MAX = 2 147 483 647 so gives input error
Farey parents (1/2147483647) = 0/1 and 1/2147483646 0/1 < 1/2147483647 < 1/2147483646 0.000000 < 0.0000000004656613 < 0.0000000004656613
Farey parents (1/100) = 0/1 and 1/99 0/1 < 1/100 < 1/99 0.000000 < 0.010000 < 0.010101
Farey parents (3/100) = 2/67 and 1/33 2/67 < 3/100 < 1/33 0.029851 < 0.030000 < 0.030303
Farey parents (1/3) = 0/1 and 1/2 0/1 < 1/3 < 1/2 0.000000 < 0.333333 < 0.500000
Farey parents (3/8) = 1/3 and 2/5 1/3 < 3/8 < 2/5 0.333333 < 0.375000 < 0.400000
Farey parents (2/5) = 1/3 and 1/2 1/3 < 2/5 < 1/2 0.333333 < 0.400000 < 0.500000
Farey parents (1/2) = 0/1 and 1/1 0/1 < 1/2 < 1/1 0.000000 < 0.500000 < 1.000000
Farey parents (2/3) = 1/2 and 1/1 1/2 < 2/3 < 1/1 0.5000000000000000 < 0.6666666666666666 < 1.0000000000000000
Farey parents (3/4) = 2/3 and 1/1 2/3 < 3/4 < 1/1 0.666667 < 0.750000 < 1.000000
List up to 10 :
Farey parents (1/2) = 0/1 and 1/1 0/1 < 1/2 < 1/1 0.0000000000000000 < 0.5000000000000000 < 1.0000000000000000
Farey parents (1/3) = 0/1 and 1/2 0/1 < 1/3 < 1/2 0.0000000000000000 < 0.3333333333333333 < 0.5000000000000000
Farey parents (2/3) = 1/2 and 1/1 1/2 < 2/3 < 1/1 0.5000000000000000 < 0.6666666666666666 < 1.0000000000000000
Farey parents (1/4) = 0/1 and 1/3 0/1 < 1/4 < 1/3 0.0000000000000000 < 0.2500000000000000 < 0.3333333333333333
Farey parents (3/4) = 2/3 and 1/1 2/3 < 3/4 < 1/1 0.6666666666666666 < 0.7500000000000000 < 1.0000000000000000
Farey parents (1/5) = 0/1 and 1/4 0/1 < 1/5 < 1/4 0.0000000000000000 < 0.2000000000000000 < 0.2500000000000000
Farey parents (2/5) = 1/3 and 1/2 1/3 < 2/5 < 1/2 0.3333333333333333 < 0.4000000000000000 < 0.5000000000000000
Farey parents (3/5) = 1/2 and 2/3 1/2 < 3/5 < 2/3 0.5000000000000000 < 0.6000000000000000 < 0.6666666666666666
Farey parents (4/5) = 3/4 and 1/1 3/4 < 4/5 < 1/1 0.7500000000000000 < 0.8000000000000000 < 1.0000000000000000
Farey parents (1/6) = 0/1 and 1/5 0/1 < 1/6 < 1/5 0.0000000000000000 < 0.1666666666666667 < 0.2000000000000000
Farey parents (5/6) = 4/5 and 1/1 4/5 < 5/6 < 1/1 0.8000000000000000 < 0.8333333333333334 < 1.0000000000000000
Farey parents (1/7) = 0/1 and 1/6 0/1 < 1/7 < 1/6 0.0000000000000000 < 0.1428571428571428 < 0.1666666666666667
Farey parents (2/7) = 1/4 and 1/3 1/4 < 2/7 < 1/3 0.2500000000000000 < 0.2857142857142857 < 0.3333333333333333
Farey parents (3/7) = 2/5 and 1/2 2/5 < 3/7 < 1/2 0.4000000000000000 < 0.4285714285714285 < 0.5000000000000000
Farey parents (4/7) = 1/2 and 3/5 1/2 < 4/7 < 3/5 0.5000000000000000 < 0.5714285714285714 < 0.6000000000000000
Farey parents (5/7) = 2/3 and 3/4 2/3 < 5/7 < 3/4 0.6666666666666666 < 0.7142857142857143 < 0.7500000000000000
Farey parents (6/7) = 5/6 and 1/1 5/6 < 6/7 < 1/1 0.8333333333333334 < 0.8571428571428571 < 1.0000000000000000
Farey parents (1/8) = 0/1 and 1/7 0/1 < 1/8 < 1/7 0.0000000000000000 < 0.1250000000000000 < 0.1428571428571428
Farey parents (3/8) = 1/3 and 2/5 1/3 < 3/8 < 2/5 0.3333333333333333 < 0.3750000000000000 < 0.4000000000000000
Farey parents (5/8) = 3/5 and 2/3 3/5 < 5/8 < 2/3 0.6000000000000000 < 0.6250000000000000 < 0.6666666666666666
Farey parents (7/8) = 6/7 and 1/1 6/7 < 7/8 < 1/1 0.8571428571428571 < 0.8750000000000000 < 1.0000000000000000
Farey parents (1/9) = 0/1 and 1/8 0/1 < 1/9 < 1/8 0.0000000000000000 < 0.1111111111111111 < 0.1250000000000000
Farey parents (2/9) = 1/5 and 1/4 1/5 < 2/9 < 1/4 0.2000000000000000 < 0.2222222222222222 < 0.2500000000000000
Farey parents (4/9) = 3/7 and 1/2 3/7 < 4/9 < 1/2 0.4285714285714285 < 0.4444444444444444 < 0.5000000000000000
Farey parents (5/9) = 1/2 and 4/7 1/2 < 5/9 < 4/7 0.5000000000000000 < 0.5555555555555556 < 0.5714285714285714
Farey parents (7/9) = 3/4 and 4/5 3/4 < 7/9 < 4/5 0.7500000000000000 < 0.7777777777777778 < 0.8000000000000000
Farey parents (8/9) = 7/8 and 1/1 7/8 < 8/9 < 1/1 0.8750000000000000 < 0.8888888888888888 < 1.0000000000000000
Farey parents (1/10) = 0/1 and 1/9 0/1 < 1/10 < 1/9 0.0000000000000000 < 0.1000000000000000 < 0.1111111111111111
Farey parents (3/10) = 2/7 and 1/3 2/7 < 3/10 < 1/3 0.2857142857142857 < 0.3000000000000000 < 0.3333333333333333
Farey parents (7/10) = 2/3 and 5/7 2/3 < 7/10 < 5/7 0.6666666666666666 < 0.7000000000000000 < 0.7142857142857143
Farey parents (9/10) = 8/9 and 1/1 8/9 < 9/10 < 1/1 0.8888888888888888 < 0.9000000000000000 < 1.0000000000000000
Here is a list up to 100
made with p.cpp
k/r = 1/2 wake 1 ; 2/3 Mis 5/12 zcr 5 ; 17 /24 c -0.2281554936539618 ; 1.115142508039937
k/r = 1/3 wake 1 ; 2/7 Mis 9/56 zcr 9 ; 65 /112 c -0.1010963638456222 ; 0.9562865108091415
k/r = 1/4 wake 1 ; 2/15 Mis 17/240 zcr 17 ; 257 /480 c -0.01718797733835019 ; 1.037652343793215
k/r = 1/5 wake 1 ; 2/31 Mis 33/992 zcr 33 ; 1025 /1984 c -0.01660571692147523 ; 1.006001828834065
k/r = 1/6 wake 1 ; 2/63 Mis 65/4032 zcr 65 ; 4097 /8064 c 0.002241106093233115 ; 1.006987004324957
k/r = 1/7 wake 1 ; 2/127 Mis 129/16256 zcr 129 ; 16385 /32512 c -0.001369133815686842 ; 1.002755660363466
k/r = 1/8 wake 1 ; 2/255 Mis 257/65280 zcr 257 ; 65537 /130560 c 0.001159450074256577 ; 1.000609019839529
k/r = 1/9 wake 1 ; 2/511 Mis 513/261632 zcr 513 ; 262145 /523264 c 0.0001701882004481036 ; 1.000517331884371
k/r = 1/10 wake 1 ; 2/1023 Mis 1025/1047552 zcr 1025 ; 1048577 /2095104 c 0.0002217350415235168 ; 0.9999309294242422
k/r = 1/11 wake 1 ; 2/2047 Mis 2049/4192256 zcr 2049 ; 4194305 /8384512 c 8.600871635354104e-05 ; 1.000043520609493
k/r = 1/12 wake 1 ; 2/4095 Mis 4097/16773120 zcr 4097 ; 16777217 /33546240 c 1.907198794976112e-05 ; 0.9999636227152136
k/r = 1/13 wake 1 ; 2/8191 Mis 8193/67100672 zcr 8193 ; 67108865 /134201344 c 1.619607246569189e-05 ; 0.9999946863543573
k/r = 1/14 wake 1 ; 2/16383 Mis 16385/268419072 zcr 16385 ; 268435457 /536838144 c -2.164159763572468e-06 ; 0.9999930692712914
k/r = 1/15 wake 1 ; 2/32767 Mis 32769/1073709056 zcr 32769 ; 1073741825 /2147418112 c 1.36020585022823e-06 ; 0.9999973111035358
k/r = 1/16 wake 1 ; 2/65535 Mis 65537/4294901760 zcr 65537 ; 4294967297 /8589803520 c -1.136844998313359e-06 ; 0.9999994042152635
k/r = 1/17 wake 1 ; 2/131071 Mis 131073/17179738112 zcr 131073 ; 17179869185 /34359476224 c -1.660928890362016e-07 ; 0.9999994938657326
k/r = 1/18 wake 1 ; 2/262143 Mis 262145/68719214592 zcr 262145 ; 68719476737 /137438429184 c -2.165774171377629e-07 ; 1.000000067631949
k/r = 1/19 wake 1 ; 2/524287 Mis 524289/274877382656 zcr 524289 ; 274877906945 /549754765312 c -8.402826966472988e-08 ; 0.9999999574950604
k/r = 1/20 wake 1 ; 2/1048575 Mis 1048577/1099510579200 zcr 1048577 ; 1099511627777 /2199021158400 c -1.861820421561348e-08 ; 1.000000035526125
k/r = 1/21 wake 1 ; 2/2097151 Mis 2097153/4398044413952 zcr 2097153 ; 4398046511105 /8796088827904 c -1.581664298449309e-08 ; 1.000000005190412
k/r = 1/22 wake 1 ; 2/4194303 Mis 4194305/17592181850112 zcr 4194305 ; 17592186044417 /35184363700224 c 2.11348855536603e-09 ; 1.000000006768042
k/r = 1/23 wake 1 ; 2/8388607 Mis 8388609/70368735789056 zcr 8388609 ; 70368744177665 /140737471578112 c -1.32827905765734e-09 ; 1.000000002625882
k/r = 1/24 wake 1 ; 2/16777215 Mis 16777217/281474959933440 zcr 16777217 ; 281474976710657 /562949919866880 c 1.110191297822782e-09 ; 1.000000000581819
k/r = 1/25 wake 1 ; 2/33554431 Mis 33554433/1125899873288192 zcr 33554433 ; 1125899906842625 /2251799746576384 c 1.62200284270896e-10 ; 1.00000000049427
k/r = 1/26 wake 1 ; 2/67108863 Mis 67108865/4503599560261632 zcr 67108865 ; 4503599627370497 /9007199120523264 c 2.115013311798569e-10 ; 0.9999999999339535
k/r = 1/27 wake 1 ; 2/134217727 Mis 134217729/18014398375264256 zcr 134217729 ; 18014398509481985 /36028796750528512 c 8.205882795347896e-11 ; 1.000000000041509
k/r = 1/28 wake 1 ; 2/268435455 Mis 268435457/72057593769492480 zcr 268435457 ; 72057594037927937 /144115187538984960 c 1.818186256603596e-11 ; 0.9999999999653065
k/r = 1/29 wake 1 ; 2/536870911 Mis 536870913/288230375614840832 zcr 536870913 ; 288230376151711745 /576460751229681664 c 1.544590637441404e-11 ; 0.9999999999949313
k/r = 1/30 wake 1 ; 2/1073741823 Mis 1073741825/1152921503533105152 zcr 1073741825 ; 1152921504606846977 /2305843007066210304 c -2.063955458366402e-12 ; 0.9999999999933906
k/r = 1/31 wake 1 ; 2/2147483647 Mis 2147483649/4611686016279904256 zcr 2147483649/9223372032559808512 ; 4611686018427387905/9223372032559808512 c 1.29718610843552e-12 ; 0.9999999999974356
k/r = 1/32 wake 1 ; 2/4294967295 Mis 4294967297/18446744069414584320 zcr 4294967297/18446744065119617024 ; 1/18446744065119617024 c -1.084197223871117e-12 ; 0.9999999999994318
k/r = 1/33 wake 1 ; 2/8589934591 unsigned integer overflow
k/r = 1/34 wake 1 ; 2/17179869183 unsigned integer overflow
k/r = 1/35 wake 1 ; 2/34359738367 unsigned integer overflow
k/r = 1/36 wake 1 ; 2/68719476735 unsigned integer overflow
k/r = 1/37 wake 1 ; 2/137438953471 unsigned integer overflow
k/r = 1/38 wake 1 ; 2/274877906943 unsigned integer overflow
k/r = 1/39 wake 1 ; 2/549755813887 unsigned integer overflow
k/r = 1/40 wake 1 ; 2/1099511627775 unsigned integer overflow
k/r = 1/41 wake 1 ; 2/2199023255551 unsigned integer overflow
k/r = 1/42 wake 1 ; 2/4398046511103 unsigned integer overflow
k/r = 1/43 wake 1 ; 2/8796093022207 unsigned integer overflow
k/r = 1/44 wake 1 ; 2/17592186044415 unsigned integer overflow
k/r = 1/45 wake 1 ; 2/35184372088831 unsigned integer overflow
k/r = 1/46 wake 1 ; 2/70368744177663 unsigned integer overflow
k/r = 1/47 wake 1 ; 2/140737488355327 unsigned integer overflow
k/r = 1/48 wake 1 ; 2/281474976710655 unsigned integer overflow
k/r = 1/49 wake 1 ; 2/562949953421311 unsigned integer overflow
k/r = 1/50 wake 1 ; 2/1125899906842623 unsigned integer overflow
k/r = 1/51 wake 1 ; 2/2251799813685247 unsigned integer overflow
k/r = 1/52 wake 1 ; 2/4503599627370495 unsigned integer overflow
k/r = 1/53 wake 1 ; 2/9007199254740991 unsigned integer overflow
k/r = 1/54 wake 1 ; 2/18014398509481983 unsigned integer overflow
k/r = 1/55 wake 1 ; 2/36028797018963967 unsigned integer overflow
k/r = 1/56 wake 1 ; 2/72057594037927935 unsigned integer overflow
k/r = 1/57 wake 1 ; 2/144115188075855871 unsigned integer overflow
k/r = 1/58 wake 1 ; 2/288230376151711743 unsigned integer overflow
k/r = 1/59 wake 1 ; 2/576460752303423487 unsigned integer overflow
k/r = 1/60 wake 1 ; 2/1152921504606846975 unsigned integer overflow
k/r = 1/61 wake 1 ; 2/2305843009213693951 unsigned integer overflow
k/r = 1/62 wake 1 ; 2/4611686018427387903 unsigned integer overflow
k/r = 1/63 wake 1 ; 2/9223372036854775807 unsigned integer overflow
Shift map: binary left
where:
- n is a number of digits ( places)
- s is an infinite binary string
n = 1
sIn 0000000000000000000000010
sOut 0000000000000000000000100 0
sOut 0000000000000000000001000 0
sOut 0000000000000000000010000 0
sOut 0000000000000000000100000 0
sOut 0000000000000000001000000 0
sOut 0000000000000000010000000 0
sOut 0000000000000000100000000 0
sOut 0000000000000001000000000 0
sOut 0000000000000010000000000 0
sOut 0000000000000100000000000 0
sOut 0000000000001000000000000 0
sOut 0000000000010000000000000 0
sOut 0000000000100000000000000 0
sOut 0000000001000000000000000 0
sOut 0000000010000000000000000 0
sOut 0000000100000000000000000 0
sOut 0000001000000000000000000 0
sOut 0000010000000000000000000 0
sOut 0000100000000000000000000 0
sOut 0001000000000000000000000 0
sOut 0010000000000000000000000 0
sOut 0100000000000000000000000 0
sOut 1000000000000000000000000 0
sOut 0000000000000000000000001 0
sOut 0000000000000000000000010 1
sOut 0000000000000000000000100 1
sOut 0000000000000000000001000 1
sOut 0000000000000000000010000 1
sOut 0000000000000000000100000 1
sOut 0000000000000000001000000 1
sOut 0000000000000000010000000 1
sOut 0000000000000000100000000 1
sOut 0000000000000001000000000 1
sOut 0000000000000010000000000 1
sOut 0000000000000100000000000 1
sOut 0000000000001000000000000 1
sOut 0000000000010000000000000 1
sOut 0000000000100000000000000 1
sOut 0000000001000000000000000 1
n = 3
sIn 0000000000000000000000010
sOut 0000000000000000000010000 0
sOut 0000000000000000010000000 0
sOut 0000000000000010000000000 0
sOut 0000000000010000000000000 0
sOut 0000000010000000000000000 0
sOut 0000010000000000000000000 0
sOut 0010000000000000000000000 0
sOut 0000000000000000000000001 0
sOut 0000000000000000000001000 1
sOut 0000000000000000001000000 1
sOut 0000000000000001000000000 1
sOut 0000000000001000000000000 1
sOut 0000000001000000000000000 1
sOut 0000001000000000000000000 1
sOut 0001000000000000000000000 1
sOut 1000000000000000000000000 1
sOut 0000000000000000000000100 2
sOut 0000000000000000000100000 2
sOut 0000000000000000100000000 2
sOut 0000000000000100000000000 2
sOut 0000000000100000000000000 2
sOut 0000000100000000000000000 2
sOut 0000100000000000000000000 2
sOut 0100000000000000000000000 2
sOut 0000000000000000000000010 3
sOut 0000000000000000000010000 3
sOut 0000000000000000010000000 3
sOut 0000000000000010000000000 3
sOut 0000000000010000000000000 3
sOut 0000000010000000000000000 3
sOut 0000010000000000000000000 3
sOut 0010000000000000000000000 3
sOut 0000000000000000000000001 3
sOut 0000000000000000000001000 4
sOut 0000000000000000001000000 4
sOut 0000000000000001000000000 4
sOut 0000000000001000000000000 4
sOut 0000000001000000000000000 4
sOut 0000001000000000000000000 4
sOut 0001000000000000000000000 4
sOut 1000000000000000000000000 4
sOut 0000000000000000000000100 5
sOut 0000000000000000000100000 5
sOut 0000000000000000100000000 5
sOut 0000000000000100000000000 5
sOut 0000000000100000000000000 5
Angles ( in the symbolic form) of external rays landing on the principal Misiurewicz points of wake p/q
Algorithm is based on the Theorem 5.3 in: Geometry of the Antennas in the Mandelbrot Set by R L Devaney and M Moreno-Rocha, April 11, 2000
See also:
- [https://mathr.co.uk/blog/2013-02-01_navigating_by_spokes_in_the_mandelbrot_set.html](Navigating by spokes in the Mandelbrot set) by Claude Heiland-Allen
- wikibooks
Files
- t.c - c program for computing angles of the external rays of Misiurewicz points, only in symbolic form
- mis30.txt - result of t.c = angles of the external rays of Misiurewicz points, only in symbolic form
====================================
p/q = 1/2 b=1
(s-)
s-(s+)
s+(s-)
(s+)
==========================================
p/q = 1/3 b=1
(s-)
s-(s+)
s-(d^1(s+))
s+(s-)
(s+)
==========================================
p/q = 2/3 b=2
(s-)
s-(s+)
s+(d^2(s+))
s+(s-)
(s+)
==========================================
p/q = 1/4 b=1
(s-)
s-(s+)
s-(d^1(s+))
s-(d^2(s+))
s+(s-)
(s+)
==========================================
p/q = 3/4 b=3
(s-)
s-(s+)
s+(d^3(s+))
s+(d^2(s+))
s+(s-)
(s+)
==========================================
p/q = 1/5 b=1
(s-)
s-(s+)
s-(d^1(s+))
s-(d^2(s+))
s-(d^3(s+))
s+(s-)
(s+)
==========================================
p/q = 2/5 b=3
(s-)
s-(s+)
s-(d^3(s+))
s-(d^1(s+))
s+(d^4(s+))
s+(s-)
(s+)
==========================================
p/q = 3/5 b=2
(s-)
s-(s+)
s-(d^2(s+))
s+(d^4(s+))
s+(d^1(s+))
s+(s-)
(s+)
==========================================
p/q = 4/5 b=4
(s-)
s-(s+)
s+(d^4(s+))
s+(d^3(s+))
s+(d^2(s+))
s+(s-)
(s+)
==========================================
Angles ( in the binary form) of external rays landing on the principal Misiurewicz points of wake p/q
c program for computing q angles rays landing on the principal Misurewicz point of the wake p/q
- prep.c - old code
- principal.c - new code
- 34_89.txt result for 34/89
======================
p/q = 2/5 b=3
(01001) lower wake = S-
01001(01010)
01001(10010)
01001(10100)
01010(00101)
01010(01001)
(01010) = S+ = higher wake
========================
p/q = 1/4 b=1
(0001) lower wake = S-
0001(0010)
0001(0100)
0001(1000)
0010(0001)
(0010) = S+ = higher wake
===================
p/q = 1/31 b=1
(0000000000000000000000000000001) lower wake = S-
0000000000000000000000000000001(0000000000000000000000000000010)
0000000000000000000000000000001(0000000000000000000000000000100)
0000000000000000000000000000001(0000000000000000000000000001000)
0000000000000000000000000000001(0000000000000000000000000010000)
0000000000000000000000000000001(0000000000000000000000000100000)
0000000000000000000000000000001(0000000000000000000000001000000)
0000000000000000000000000000001(0000000000000000000000010000000)
0000000000000000000000000000001(0000000000000000000000100000000)
0000000000000000000000000000001(0000000000000000000001000000000)
0000000000000000000000000000001(0000000000000000000010000000000)
0000000000000000000000000000001(0000000000000000000100000000000)
0000000000000000000000000000001(0000000000000000001000000000000)
0000000000000000000000000000001(0000000000000000010000000000000)
0000000000000000000000000000001(0000000000000000100000000000000)
0000000000000000000000000000001(0000000000000001000000000000000)
0000000000000000000000000000001(0000000000000010000000000000000)
0000000000000000000000000000001(0000000000000100000000000000000)
0000000000000000000000000000001(0000000000001000000000000000000)
0000000000000000000000000000001(0000000000010000000000000000000)
0000000000000000000000000000001(0000000000100000000000000000000)
0000000000000000000000000000001(0000000001000000000000000000000)
0000000000000000000000000000001(0000000010000000000000000000000)
0000000000000000000000000000001(0000000100000000000000000000000)
0000000000000000000000000000001(0000001000000000000000000000000)
0000000000000000000000000000001(0000010000000000000000000000000)
0000000000000000000000000000001(0000100000000000000000000000000)
0000000000000000000000000000001(0001000000000000000000000000000)
0000000000000000000000000000001(0010000000000000000000000000000)
0000000000000000000000000000001(0100000000000000000000000000000)
0000000000000000000000000000001(1000000000000000000000000000000)
0000000000000000000000000000010(0000000000000000000000000000001)
(0000000000000000000000000000010) = S+ = higher wake
This project is licensed under License GPL3+
GitLab uses:
- the Redcarpet Ruby library for Markdown processing see also user doc
- KaTeX to render math written with the LaTeX syntax, but only subset
cd existing_folder
git init
git remote add origin git@gitlab.com:adammajewski/wake_gmp.git
git add .
git commit -m "Initial commit"
git push -u origin master
Local repo: ~/c/mandel/wake/wake_gmp