Small library for tensorflow proto models (*.pb) encryption/decryption.
You may use random string with random length like a key, then library calculates sha256 hash of it and uses as internal key with size 256 bits.
Copy sources from TFSecured dir into your project.
C++ usage (see TFPredictor.mm):
#include <GraphDefDecryptor.hpp>
........
tensorflow::GraphDef graph;
// Decryption:
const std::string key = "JHEW8F7FE6F8E76W8F687WE6F8W8EF5";
auto status = tfsecured::GraphDefDecryptAES(path, // path to *.pb file (frozen graph)
&graph,
key); // your key
if (!status.ok()) {
std::cout << status.error_message() << std::endl;
return;
}
// Create session :
std::unique_ptr<Session> session(NewSession(options));
status = session->Create(graph);
// Run session ....
Encrypt model via python script (see encrypt_model.py):
$ python encrypt_model.py <INPUT_PB_MODEL> \
<OUTPUT_PB_MODEL> \
<KEY> # optional, generated randomly by script
You may use a version of TFSecured with OpenSSL, it shows better performance on some platforms - check out the branch feature/OpenSSL
Prepare repository (install Tensorflow via pods)
$ cd iosDemo
$ pod install
And open it in Xcode.