Wachowiak, L., Lang, C., Heinisch, B., & Gromann, D. (2021). Towards Learning Terminological Concept Systems from Multilingual Natural Language Text. In 3rd Conference on Language, Data and Knowledge (LDK 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. Chicago
If you just want to try out the service without using the code provided here you can use our implementation made available on the European Language Grid. However, the implemenation on the European Language Grid utilizes a slightly improved architecture as well as a different dataset for model-training; an updated description will be made available soon.
Architecture for extracting terminological concepts systems from natural language.
The resulting terminological concept system is returned in a TBX format as well as connected graph (see below).
Dataset | Precicion | Recall | F1 |
---|---|---|---|
TermEval2020 EN | 54.9 | 62.2 | 58.3 |
TermEval2020 FR | 65.4 | 51.4 | 57.6 |
TermEval2020 NL | 67.9 | 71.7 | 69.8 |
ACL RD-TEC Annotator 1 | 74.4 | 77.2 | 75.8 |
ACL RD-TEC Annotator 2 | 80.1 | 79.3 | 80.0 |
Relation Type | Precicion | Recall | F1 |
---|---|---|---|
synonymy | 0.85 | 0.76 | 0.80 |
activityRelation (e1,e2) | 0.93 | 0.97 | 0.95 |
activityRelation (e2,e1) | 0.00 | 0.00 | 0.00 |
associativeRelation | 0.90 | 0.92 | 0.91 |
causalRelation (e1,e2) | 0.90 | 0.95 | 0.92 |
causalRelation (e2,e1) | 0.92 | 0.91 | 0.91 |
genericRelation (e1,e2) | 0.90 | 0.93 | 0.92 |
genericRelation (e2,e1) | 0.46 | 0.41 | 0.43 |
instrumentalRelation (e1,e2) | 0.72 | 0.68 | 0.70 |
instrumentalRelation (e2,e1) | 0.85 | 0.88 | 0.86 |
none | 0.69 | 0.44 | 0.54 |
originationRelation (e1,e2) | 0.83 | 0.89 | 0.86 |
originationRelation (e2,e1) | 0.84 | 0.83 | 0.83 |
partitiveRelation (e1,e2) | 0.90 | 0.85 | 0.87 |
partitiveRelation (e2,e1) | 0.77 | 0.77 | 0.77 |
spatialRelation (e1,e2) | 0.90 | 0.91 | 0.91 |
spatialRelation (e2,e1) | 0.90 | 0.82 | 0.86 |